Câu hỏi:

21/09/2022 1,534 Lưu

Cho tứ diện ABCD, gọi M và N lần lượt là trung điểm của AB và AC. E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là

A. tam giác MNE
B. tứ giác MNEFvớ\ F là điểm bất kì trên cạnh BD
C. hình bình hành MNEF với F là điểm bất kì trên cạnh BD mà EF song song với BC
D. hình thang MNEF với F là điểm trên cạnh BD mà EF song song với BC

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Cho tứ diện ABCD, gọi M và N lần lượt là trung điểm của AB và AC. E là điểm trên cạnh CD với ED = 3EC (ảnh 1)

Ta có MNEABC=MN,  MNEACD=NE

Vì hai mặt phẳng (MNE) và (BCD) lần lượt chứa hai đường thẳng song song là MN và BC nên MNEBCD=Ex sao cho Ex // BC.

Gọi F=ExBD, khi đó 

MNEBCD=EFMNEABD=FMvà MN=12BC;​ ​EF=34BC

Vậy thiết diện là hình thang MNEF với F là điểm trên cạnh BD mà EF song song với BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. SC
B. đường thẳng qua S và song song với AB
C. đường thẳng qua G và song song với CD
D. đường thẳng qua G và cắt BC

Lời giải

Đáp án C
Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi I, J lần lượt là trung điểm của AD và BC, G là trọng tâm tam giác SAB. (ảnh 1)

Ta có GGABGIJAB//IJGABGIJ=Gx sao cho Gx // AB // IJ.

Mà AB // CD => Gx // AB // IJ // CD

 

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. a) Tìm giao tuyến của các cặp mặt phẳng (SAB) và (SCD);  (ảnh 1)

a) Ta có SSABSCDABSAB;  CDSCDAB//CD

SABSCD=Sx trong đó Sx // AB // CD

Trong (ABCD) gọi O=ACBD, suy ra OSACSBD   1

Lại có SSACSBD          2

Từ (1) và (2), suy ra SO=SACSBD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. đường thẳng qua S và song song với AB và CD
B. đường thẳng qua S và song song với AD và BC
C. đường thẳng qua S và giao điểm của AD và CD
D. đường thẳng qua S và giao điểm của AC và BD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP