Câu hỏi:

13/07/2024 7,167

Cho tứ diện ABCD, G là trọng tâm ΔABD và M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh đường thẳng MG song song với mặt phẳng (ACD)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD, G là trọng tâm ABD  và M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh đường thẳng MG song song với mặt phẳng (ACD) (ảnh 1)

Gọi I là trung điểm của AD.

Ta có G là trọng tâm ΔABD khi đó BGBI=23.

Mặt khác, MBC và BM=2MCBMBC=23.

Từ đó suy ra BGBI=BMBC.

Áp dụng định lý Ta-lét đảo suy ra GM // CI.  

CIACD nên GM // ACD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi M, N theo thứ tự là trọng tâm tam giác SAB, tam giác SCD (ảnh 1)

Gọi EF lần lượt là trung điểm của ABCD.

Do M; N là trọng tâm tam giác SAB, SCD nên S, M, E thẳng hàng;

S, N, F thẳng hàng.

Xét ΔSEFSMSE=23=SNSF nên theo định lý Ta-lét ta có MN // EF

EFABCD nên MN // (ABCD)

 

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Chứng minh đường thẳng OI song song với mặt phẳng (SAB) và mặt phẳng (SAD) (ảnh 1)

Ta có IO là đường trung bình của tam giác SAC suy ra IO // SA

Do SASABSASAD từ đó suy ra IO // SABvà IO // SAD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP