Câu hỏi:

13/07/2024 2,134

Một đường thẳng đi qua trọng tâm G của tam giác ABC cắt cạnh AB, AC lần lượt tại M và N. Chứng minh rằng:BMAM+CNAN=1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

* Tìm cách giải. Để tạo ra tỉ số ABAM;ACAN chúng ta cần vận dụng định lý Ta-let, mà hình vẽ chưa có yếu tố song song do vậy chúng ta cần kẻ thêm yếu tố song song. Kẻ đường thẳng song song với MN từ B và C vừa khai thác được yếu tố trọng tâm, vừa tạo ra được tỉ số yêu cầu.

* Trình bày lời giải

Trường hợp 1. Nếu MN // BC, thì lời giải giản đơn (dành cho bạn đọc).

Trường hợp 2. Xét MN không song song với BC.

Xét  BMAM=GIAG;CNAN=KGAG

hay BMAM+CNAN=GI+GKAG=2.GDAG=1,  suy ra  BMAM+CNAN=1.

Nhận xét. Từ kết quả (1), chúng ta thấy rằng bởi G là trọng tâm nên 2ADAG=3  . Vậy nếu G không phải là trọng tâm thì ta có bài toán sau:

 - Một đường bất kỳ cắt cạnh AB, AC và đường trung tuyến AD của tam giác ABC lần lượt tại M, N và G. Chứng minh rằng:  ABAM+ACAN=2.ADAG.

- Nếu thay yếu tố trung tuyến bằng hình bình hành, ta có bài toán sau: Cho hình bình hành ABCD. Một đường thẳng bất kỳ cắt AB, AD và AC lần lượt tại M, N và G. Chứng minh rằng:  ABAM+ADAN=ACAG.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có A^=120° , AD là đường phân giác. Chứng minh rằng:  1AB+1AC=1AD.

Xem đáp án » 13/07/2024 8,933

Câu 2:

Một đường thẳng đi qua trọng tâm G của tam giác ABC cắt cạnh AB, AC lần lượt tại M và N. Chứng minh rằng:

ABAM+ACAN=3;

Xem đáp án » 13/07/2024 6,224

Câu 3:

Cho tam giác ABC có AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME // AC; MF // AB. Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IBID ?

Xem đáp án » 13/07/2024 5,430

Câu 4:

Cho tam giác ABC nhọn có AH là đường cao. Trên AH, AB, AC lần lượt lấy điểm D, E, F sao cho EDC^=FDB^=90° . Chứng minh rằng: EF//BC .

Xem đáp án » 13/07/2024 1,636

Câu 5:

Cho ABCD là hình bình hành có tâm O. Gọi M, N là trung điểm BO; AO. Lấy F trên cạnh AB sao cho FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. Chứng minh rằng:BABF+BCBE=4;

Xem đáp án » 13/07/2024 1,607

Câu 6:

Cho ABCD là hình bình hành có tâm O. Gọi M, N là trung điểm BO; AO. Lấy F trên cạnh AB sao cho FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. Chứng minh rằng:BE+AKBC.

Xem đáp án » 13/07/2024 727
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay