Câu hỏi:

13/07/2024 5,526 Lưu

Cho tam giác ABC có AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME // AC; MF // AB. Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IBID ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Qua D kẻ đường thẳng song song với AB, cắt tia AI tại P. Áp dụng định lý Ta-let, cho các đoạn thẳng song song ta có:

DP//ABIBID=ABDP=ABHK.HKDP(1).

ME//ACABHK=ABBE=BCBM(2).

 MH//ABHKDP=AHAD=BMBD (3).

Từ (1), (2) và (3) suy ra:

IBID=BCBM.BMBD=BCBD=2. Vậy IBID=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Kẻ DE // AB, ta có:

D1^=A1^=60°;A2^=60° nên tam giác ADE đều. Suy ra AD = AE = DE.

Áp dụng hệ quả định lý Ta-lét:DEAB=CEAC  hay  ADAB=CEAC.

Mặt khác ADAC=AEAC  nên  ADAB+ADAC=CEAC+AEAC=ACAC=1.

Suy ra   1AB+1AC=1AD.

Nhận xét. Những bài toán chứng minh đẳng thức có nghịch đảo độ dài đoạn thẳng, bạn nên biến đổi và chứng minh hệ thức tương đương có tỉ số của hai đoạn thẳng.

Lời giải

Media VietJack

* Tìm cách giải. Để tạo ra tỉ số ABAM;ACAN chúng ta cần vận dụng định lý Ta-let, mà hình vẽ chưa có yếu tố song song do vậy chúng ta cần kẻ thêm yếu tố song song. Kẻ đường thẳng song song với MN từ B và C vừa khai thác được yếu tố trọng tâm, vừa tạo ra được tỉ số yêu cầu.

* Trình bày lời giải

Trường hợp 1. Nếu MN // BC, thì lời giải giản đơn (dành cho bạn đọc).

Trường hợp 2. Xét MN không song song với BC.

Gọi giao điểm của AG và BC là D  BD=CD.

Kẻ BI // CK // MN  I,KAD

Xét ΔBDI  ΔCDK  BD=CD;IBD^=KCD^;IDB^=KDC^  nên  ΔBDI=ΔCDKg.cg

 DI=DK.

Áp dụng định lý Ta-lét, ta có ABAM=AIAG  (vì MG // BI);

ACAN=AKAG (vì GN // CK).

Suy ra    ABAM+ACAN=2.ADAG=3        (1) (vì AD=32.AG ).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP