Câu hỏi:
12/07/2024 732
Cho hình thang ABCD ( AB // CD, AB < CD). Trên AD lấy M, N, P sao cho AM = MN = NP = PQ. Từ M, N, P dựng các đường thẳng song song với hai đáy cắt BC lần lượt tại E, F, G. Chứng minh:
a. Chứng minh BE = EF = FG = GC.
Cho hình thang ABCD ( AB // CD, AB < CD). Trên AD lấy M, N, P sao cho AM = MN = NP = PQ. Từ M, N, P dựng các đường thẳng song song với hai đáy cắt BC lần lượt tại E, F, G. Chứng minh:
a. Chứng minh BE = EF = FG = GC.
Quảng cáo
Trả lời:

a, Xét hình thang ANFD (AD // NF ) có M là trung điểm AN, ME // AD.
=> E là trung điểm DF => DE = EF (1)
Xét hình thang MEGP (ME // GP) có N là trung điểm MP, NF // ME
=> F là trung điểm FC => GC = FG (2)
Xét hình thang NFCB (NF // CB) có P là trung điểm NB, PG // NF.
=> G là trung điểm FC => GC = FG (3).
Từ (1) (2) (3) suy ra EG => DE = EF= FG = FC .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác cân tại A có AM là đường cao.
Suy ra AM cũng là đường trung tuyến.
Ta có: có M, N lần lượt là trung điểm cạnh BC và AC.
=> MN là đường trung bình của tam giác ABC.
=> MN // AB
Mà M, N, E thẳng hàng nên => ME // AB.
Lời giải

a. Tam giác AEM có I là trung điểm của AM, ID // ME nên AD = DE. (1)
Tam giác BCD có M là trung điểm của BC, ME // BD nên DE = EC. (2)
Từ (1) và (2) suy ra: AD = DE = EC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.