Câu hỏi:
13/07/2024 450Cho tam giác ABC và O là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là trung điểm của BC, CA, AB. Gọi A', B', C' lần lượt là các điểm đối xứng với O qua D, E, F. Chứng minh rằng ba đường thẳng AA', BB', CC' đồng quy.
Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 7: Đối xứng trục có đáp án !!
Quảng cáo
Trả lời:
Ta có AC' và BO đối xứng nhau qua F nên AC' = BO và AC' // BO. (1)
BO và CA' đối xứng nhau qua D nên BO = CA' và BO // CA' (2)
Từ (1) và (2) suy ra: AC' = CA' và AC // CA', do đó tứ giác ACA'C' là hình bình hành.
Chứng minh tương tự ta được tứ giác ABA'B' là hình bình hành.
Hai hình bình hành ACA'C' và ABA'B' có chung đường chéo AA' nên các đường chéo AA', BB', CC' đồng quy.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vẽ đường trung tuyến AM của tam giác ABC và đường trung tuyến DN của tam giác DEF. Gọi G là giao điểm của hai đường trung tuyến này. Gọi H và K lần lượt là trung điểm của GA và GD.
Xét có AN là đường trung bình => AN // CE và do đó AN // BM và AN = BM dẫn tới ANMB là hình bình hành =>MN // AB và .
Mặt khác, HK là đường trung bình của nên HK // AD và .
Từ đó MN // HK và MN = HK.
Suy ra MNHK là hình bình hành, hai đường chéo HM và NK cắt nhau tại G nên G là trung điểm của mỗi đường.
Do đó GM = GH = HA => G là trọng tâm của .
GN = GK = KD => G là trọng tâm của .
Vậy và có cùng một trọng tâm.
Lời giải
Vẽ điểm M đối xứng với D qua AB và vẽ điểm N đối xứng với D qua AC. Khi đó .
Chu vi
Chu vi nhỏ nhất khi độ dài đường gấp khúc MFEN ngắn nhất. Muốn vậy bốn điểm M, F, E, N phải thẳng hàng theo thứ tự đó.
Do đó ta phải tìm điểm D trên BC sao cho MN nhỏ nhất.
Theo kết quả bài 7.2, để MN nhỏ nhất thì D là hình chiếu của A trên BC. Khi đó E và F lần lượt là giao điểm của MN với AC và AB (h.7.12).
Ta chứng minh với cách xác định D, E, F như vậy thì chu vi nhỏ nhất.
Thật vậy, khi thì chu vi bằng MN và MN nhỏ nhất. (1)
Khi D, E, F ở những vị trí khác thì chu vi bằng độ dài đường gấp khúc MFEN do đó lớn hơn MN. (2)
Chú ý: Ta có nhận xét điểm E là chân đường cao vẽ từ đỉnh B, điểm F là chân đường cao vẽ từ đỉnh C của .
Thật vậy, xét có các đường BF và CE lần lượt là các đường phân giác ngoài tại đỉnh F và E. Hai đường thẳng này cắt nhau tại A nên tia DA là tia phân giác của góc EDF.
Ta có: nên DC là tia phân giác ngoài tại đỉnh D của .
Mặt khác, EC là đường phân giác ngoài tại đỉnh E.
Điểm C là giao điểm của hai đường phân giác ngoài nên FC là đường phân giác trong. Kết hợp với FB là đường phân giác, suy ra hay .
Chứng minh tương tự, ta được .
Như vậy ba điểm D, E, F có thể xác định bởi chân của ba đường cao của tam giác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án