Câu hỏi:

13/07/2024 1,286

Cho hàm số y=ax2  có đồ thị (P)  và đường thẳng  (d):y=mx+m3

Chứng minh rằng đường thẳng (d) luôn cắt đồ thị (P) tại hai điểm phân biệt C và D với mọi giá trị của m

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình hoành độ giao điểm của (d) và (P) là:

12x2=mx+m3x2+2mx+2m6=0 (*)Δ'=m2(2m6)=m22m+6=(m1)2+5>0 m

Do đó, đường thẳng (d) luôn cắt đồ thị (P) tại hai điểm phân biệt C và D với mọi giá trị của m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình hoành độ giao điểm của (d) và (P) là:  x2x(m1)=0(*)

Để (d) cắt parabol (P) tại hai điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt Δ=4m3>0m>34

Khi đó theo định lý Vi-ét ta có:x1+x2=1x1x2=(m1)

Theo đề bài:  41x1+1x2x1x2+3=04x1+x2x1.x2x1x2+3=04m+1+m+2=0

 m2+m6=0( Điều kiện:m1 )

m=3 (loại) hoặc m=2 (thỏa mãn).
Vậy m=2 là giá trị cần tìm.

Lời giải

Ta có:x1+1x2+1=1x1x2+x1+x1=0 (**)

Áp dụng hệ thức Vi-et cho (*):x1+x2=3x1x2=m2+1

 (**)m2+1+3=0m2=4m=±2

Vậy m=±2 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP