Câu hỏi:

20/10/2022 1,079

c) Cho AB cố định, C thay đổi sao cho BCA^=900 . Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua hai điểm cố định và tâm đường tròn này nằm trên đường thẳng cố định

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
c, Ta có  E1^=A1^ suy ra tứ giác AMFE nội tiếp
Từ đó suy ra đường tròn ngoại tiếp tam giác AEF luôn qua hai điểm A, M cố định. Vậy tâm đường tròn ngoại tiếp tam giác AEF luôn nằm trên đường trung trực của AM cố định

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, 
Trên cạnh CD của hình vuông ABCD, lấy một điểm M, vẽ đường tròn tâm O đường kính AM (ảnh 1)

Ta có D là giao điểm thứ nhất của (O) và (O')

Dễ thấy AEMD  là hình chữ nhật và ED là đường kính của (O)

Nên END^=900  (góc nội tiếp chắn nửa cung đường tròn)

 Mặt khác CD là đường kính của (O')

nênDNC^=900 (góc nội tiếp chắn nửa đường tròn)

END^+DNC^=1800 hay ba điểm E,N,C  thẳng hàng.

Lời giải

a)

Cho tam giác vuông ABC nội tiếp đường tròn tâm O đường kính AB. Trên tia đối của tia CA lấy điểm D sao cho   CD = AC   (ảnh 1)

Xét  ΔABD BCDA,CA=CD  nên BC vừa là đường cao vừa là đường trung tuyến, do đó ΔABD  cân tại B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP