Câu hỏi:

13/12/2022 451

Tìm giá trị lớn nhất của hàm số  fx=x32x24x+1 trên đoạn  1;3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đạo hàm  f'x=3x24x4f'x=0x=21;3x=231;3.

Ta có  f1=4f2=7f3=2max1;3fx=2. Chọn B.

Cách 2. Sử dụng chức năng MODE 7 và nhập hàm  fX=X32X24X+1 với thiết lập Start 1, End 3 Step 0,2.

Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(x) bằng -2 khi X=3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đặt  t=sinx 1t1.

Khi đó, bài toán trở thành Tìm giá trị lớn nhất của hàm số  gt=t+1t2+t+1 trên đoạn  1;1''.

Đạo hàm  g't=t22tt2+t+12g't=0t22t=0t=01;1t=21;1.

Ta có  g1=0g0=1g1=23max1;1gt=g0=1maxxfx=1. Chọn A.

Lời giải

Đạo hàm  f'x=2x2x2=2x31x2f'x=0x=10;+.

Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy  min0;+fx=f1=3.Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP