Câu hỏi:

15/12/2022 6,398

Tìm giá trị lớn nhất M của hàm số  fx=x23x+2x trên đoạn  4;4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số fx xác định và liên tục trên đoạn  4;4.

● Nếu  x1;2 thì  x23x+20 nên suy ra  fx=x2+2x2.

Đạo hàm  f'x=2x+2f'x=0x=11;2. Ta có  f1=1 f2=2.

● Nếu  x4;12;4 thì  x23x+20 nên suy ra   fx=x24x+2.

Đạo hàm  f'x=2x4f'x=0x=24;12;4.Ta có  f4=34 f1=1f2=2f4=2.

So sánh hai trường hợp, ta được  max4;4fx=f4=34. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đặt  t=sinx 1t1.

Khi đó, bài toán trở thành Tìm giá trị lớn nhất của hàm số  gt=t+1t2+t+1 trên đoạn  1;1''.

Đạo hàm  g't=t22tt2+t+12g't=0t22t=0t=01;1t=21;1.

Ta có  g1=0g0=1g1=23max1;1gt=g0=1maxxfx=1. Chọn A.

Lời giải

Đạo hàm  f'x=2x2x2=2x31x2f'x=0x=10;+.

Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy  min0;+fx=f1=3.Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP