Câu hỏi:

13/01/2023 247

Cho hàm số  y=2x3+mx212x13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị cách đều trục tung.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có  y'=6x2+2mx12.

Do  Δ'=m2+72>0, m nên hàm số luôn có hai điểm cực trị x1, x2 với  x1, x2 là hai nghiệm của phương trình  y'=0. Theo định lí Viet, ta có  x1+x2=m3.  

Gọi  Ax1;y1 và  Bx2;y2 là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán  x1=x2x1=x2 (do  x1x2)

 x1+x2=0m3=0m=0. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị thực của tham số m để hàm số fx=2x33x2m có các giá trị cực trị trái dấu.

Xem đáp án » 13/01/2023 12,677

Câu 2:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem đáp án » 11/01/2023 6,450

Câu 3:

Hàm số  y=x24212x3 có bao nhiêu điểm cực trị?

Xem đáp án » 13/01/2023 5,702

Câu 4:

Cho hàm số y=13x3m+1x2+2m+1x43 với m>0 là tham số thực. Tìm giá trị của m để đồ thị hàm số có điểm cực đại thuộc trục hoành.

Xem đáp án » 13/01/2023 4,993

Câu 5:

Cho hàm số  y=13x3mx2+2m1x3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có điểm cực đại và cực tiểu nằm cùng một phía đối với trục tung.

Xem đáp án » 13/01/2023 4,735

Câu 6:

Tìm tất cả các giá trị thực của tham số m để khoảng cách từ điểm  M0;3 đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số  y=x3+3mx+1 bằng 25.

Xem đáp án » 11/01/2023 4,706

Câu 7:

Cho hàm số  y=ax4+bx2+1   a0. Với điều kiện nào của các tham số  a, b thì hàm số có một điểm cực trị và là điểm cực tiểu.

Xem đáp án » 13/01/2023 4,367

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store