Câu hỏi:

13/01/2023 270 Lưu

Cho hàm số y=x42mx2+2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có ba điểm cực trị A,B,C thỏa mãn OA.OB.OC=12 với O là gốc tọa độ?

A. 2

B. 1

C. 0

D. 4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để hàm số có ba điểm cực trị ab<01.2m<0m>0.

Khi dó y'=4x34mx=4xx2m; y'=0x=0x=mx=m

Suy ra tọa độ các điểm cực trị của đồ thị hàm số là: A0;2, Bm;m2+2, Cm;m2+2.

Ycbt OA.OB.OC=122.m+m2+22=12m=2 có một giá trị nguyên.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Ta có  f'x=6x26x;  f'x=0x=0f0=mx=1f1=m1.

 

Yêu cầu bài toán  mm+1<01<m<0. Chọn C.

Câu 2

A. 3.   

B. 4. 
C. 5.      
D. 6.

Lời giải

Đạo hàm  y'=2.2xx2412x3+x242.3.212x2

=12x2x24.4x12x6x24=212x2x247x22x12.

Phương trình y'=0có 4 nghiệm đơn nên hàm số có 4 điểm cực trị. Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP