Câu hỏi:

13/01/2023 1,444

Cho hàm số y=x4+2mx24 có đồ thị là Cm. Tìm tất cả các giá trị thực của tham số m để tất cả các điểm cực trị của Cm đều nằm trên các trục tọa độ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có y'=4x3+4mx=4xx2m; y'=0x=0x2=m.

Để hàm số có ba điểm cực trị m>0.

Tọa độ các điểm cực trị của đồ thị hàm số là:

                       A0;4Oy, Bm;m24 Cm;m24.

Yêu cầu bài toán B,COxm24=0m=2loaïim=2thoûamaõn. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Ta có  f'x=6x26x;  f'x=0x=0f0=mx=1f1=m1.

 

Yêu cầu bài toán  mm+1<01<m<0. Chọn C.

Lời giải

Đạo hàm   y'=x22m+2x+2m+3; y'=0x=1x=2m+3.

Để hàm số có hai điểm cực trị  x1, x2 khi và chỉ khi  2m+31m1. (*) 

Gọi  Ax1;y1 và  Bx2;y2 là hai điểm cực trị của đồ thị hàm số.

Khi đó theo định lí Viet, ta có  x1+x2=2m+4.

Yêu cầu bài toán  2m+42=1m=1: không thỏa mãn  *.

Chọn D.

Nhận xét. Qua khảo sát 99% học sinh chọn đáp án A, lý do là quên điều kiện để có hai cực trị. Tôi cố tình ra giá trị m đúng ngay giá trị loại đi.

Nếu gặp bài toán không ra nghiệm đẹp như trên thì ta giải như sau: x0 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bậc ba  y=ax3+bx2+cx+d khi và chỉ khi  y'=0 có hai nghiệm phân biệt (Δ>0 ) vày''x0=0''. 

Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP