Câu hỏi:

13/05/2021 1,768

Cho hàm số y=ax3+bx2+cx+d với a, b, c, d là các số thực và a khác 0 (có đồ thị như hình vẽ). Khẳng định nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Đáp án A đúng. Ta thấy hàm số nghịch biến trên 0;2y'<0,x0;2

Đáp án B sai. Hàm số không có GTLN.

Đáp án C đúng. Hàm số có hai điểm cực trị x = - 2 và x = 0.

Đáp án D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Nhận xét: hàm số bậc 3 có 2 cực trị và hệ số a > 0.

Khi x=0y=d>0

y'=3ax2+2bx+c có 2 nghiệm phân biệt trái dấu 3ac<0c<0do  a>0

x1+x22>02b3a2>0b3a>0b>0do  a>0b<0

 

Vậy khẳng định đúng là a>0,b<0;c<0,d>0

Câu 2

Lời giải

Đáp án A

Từ đồ thị hàm số ta dễ dàng thấy được:

Điểm cực tiểu 1;4,1;4 và điểm cực đại 0;3

Xét đáp án A: y'=4x34x=4xx21 có các nghiệm x=0;x=±1

Do đó đồ thị có các điểm cực tiểu là: 1;4,1;4 và điểm cực đại là 0;3

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP