Câu hỏi:

15/05/2021 4,033

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x8+m2x5m24x4+1 đạt cực tiểu tại x = 0?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có:

y'=x38x4+5xm24m24=0x=0gx=8x4+5xm24m24=0

Do x = 0 là một nghiệm của đạo hàm nên hàm số đạt cực tiểu tại x = 0 y' đổi dấu từ - sang + khi qua nghiệm x = 0.

+ TH1: x = 0 là nghiệm của g(x) hay m=±2

Với m = 2 thì g(x) = 0 có nghiệm x = 0 bội 4 theo kết quả ở trên thì x = 0 là nghiệm bội 7 của y’ nên x = 0 là điểm cực tiểu của hàm số nên chọn m = 2.

Với m = - 2 thì g(x) có nghiệm x = 0 và 1 nghiệm dương, lúc này x = 0 là nghiệm bội 4 của f'(x) nên x = 0 không là điểm cực trị của hàm số. Loại m = - 2.

+ TH2: x = 0 không là nghiệm của g(x) hay m±2. Ta có: g0=4m24

y'=x3gx đổi dấu từ - sang + qua nghiệm x = 0 khi và chỉ khi limx0+gx>0limx0gx>0

4m24>0m24<02<m<2

Do m nguyên nên m1;0;1

Kết hợp hai trường hợp ta được m1;0;1;2

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) xác định trên R và có đồ thị f'(x) như hình vẽ. Đặt gx=fxx. Hàm số g(x) đạt cực đại tại điểm nào sau đây?

Xem đáp án » 15/05/2021 37,008

Câu 2:

Cho hàm số y=f(x)=ax3+bx2+cx+d có đồ thị như hình bên. Đặt gx=fx2+x+2. Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 15/05/2021 13,713

Câu 3:

Cho đường cong C:y=2x+3x1 và M là một điểm nằm trên (C). Giả sử d1,d2 tương ứng là các khoảng cách từ M đến hai tiệm cận của (C), khi đó d1.d2 bằng:

Xem đáp án » 15/05/2021 7,464

Câu 4:

Hai điểm M, N lần lượt thuộc hai nhánh của đồ thị hàm số y=3x1x3. Khi đó độ dài đoạn thẳng MN ngắn nhất bằng:

Xem đáp án » 15/05/2021 5,488

Câu 5:

Cho hàm số f(x)=x3+ax2+bx2 thỏa mãn a+b>13+2a+b<0. Số điểm cực trị của hàm số y=fx bằng:

Xem đáp án » 15/05/2021 4,085

Câu 6:

Cho hàm số y=x2x+1 có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng:

Xem đáp án » 15/05/2021 2,890
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua