Câu hỏi:

04/06/2021 600

Cho hàm số y=f(x) liên tục trên đoạn 1;4 và có đồ thị như hình vẽ:

Có tất cả bao nhiêu giá trị nguyên của m thuộc đoạn 10;10 để bất phương trình fx+m<2m đúng với mọi x thuộc đoạn 1;4?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:fx+m<2m

2m<fx+m<2m

3m<fx<m

3m<min1;4fxmax1;4fx<m3m<23<mm>23m>3m>3

Kết hợp điều kiện đề bài  m3;10,mZm4;5;6;7;8;9;10

Vậy có 7 giá trị của m thỏa mãn yêu cầu bài toán

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Đặt hx=3x44x312x2+m ta có: h'x=12x312x224x=0x=0x=1x=2

Bảng biến thiên:

Ta thấy  m32<m5<m<m+27

TH1:  m320m32

M=m+27=712m=172 (ktm)

TH2:  m32<0m55m<32

M32m;m+27

Nếu m+2732m2m5m52, kết hợp điều kiện 5m<32, khi đó:

M=m+27=712m=172 (tm)

Nếu m+27<32mm<52, kết hợp điều kiện  m

TH3:  m5<0m0m<5

 M32m;m+27  

Nếu M32m;m+27, kết hợp điều kiện 52m<5, khi đó:

M=m+27=712m=172 (ktm)

Nếu m+27<32mm<52, kết hợp điều kiện  0m<52, khi đó

M=32m=712m=72 (ktm)

TH4: m+270m27, khi đó M=32m=712m=72 (tm)

Vậy có hai giá trị của m thỏa mãn yêu cầu bài toán là: m172;72, tổng các giá trị của m là:

172+72=102=5

Đáp án cần chọn là: D

Lời giải

Lời giải:

Đặt t=12cosx. Với x0;3π2 thì  cosx1;112cosx1;3t1;3

Khi đó ta có: y=f(t) với t1;3

Quan sát đồ thị hàm số y=f(t) trên đoạn 1;3 ta thấy GTLN của hàm số là 2, GTNN của hàm số là  32

M=2,m=32M+m=12

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP