Câu hỏi:

06/12/2019 26,427

Tìm tất cả các giá trị thực của m để hàm số y=mx4-(m+1)x2+2m-1 có 3 điểm cực trị ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

[Phương pháp tự luận]:

y'=4mx3-2(m+1)x=0 

 

Hàm số có 3 điểm cực trị

 

[Phương pháp trắc nghiệm] :

Đồ thị hàm số y=ax4+bx2+c có 3 cực trị khi và chỉ khi a và b trái dấu , tức là : ab < 0 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có:y'=2x2-2mx-2(3m2-1)

g(x)=x2-mx-3m2+1 là tam thức bậc hai có =13m2-4

Do đó hàm số có hai điểm cực trị khi và chỉ khi y' có hai nghiệm phân biệt

g(x) có hai nghiệm phân biệt

x1;x2 là các nghiệm của g(x) nên theo định lý Vi-ét, ta có

Đối chiếu với điều kiện (1), ta thấy chỉ m=23 thỏa mãn yêu cầu bài toán

Lời giải

Chọn D

Hàm số có 3 điểm cực trị m0

Khi đó 3 điểm cực trị của đồ thị hàm số là

Do tính chất đối xứng, ta có ABC cân tại đỉnh A

Vậy ABC chỉ có thể vuông cân tại đỉnh A

Kết hợp điều kiện ta có: m=±1 ( thỏa mãn).

Lưu ý: có thể sử dụng công thức b38a+1=0.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP