Câu hỏi:

27/01/2021 26,360

Tìm tất cả các giá trị thực của tham số m để hàm số y=(m+1)x4-mx2+32 chỉ có cực tiểu mà không có cực đại

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Hàm trùng phương chỉ có 1 cực trị và cực trị đó là CT

a>0b0m+1>0-m0-1<m0

Cẩm Tú

Cẩm Tú

Điều kiện phải là a>=0 và b>0 đáp án Đề chứ ạ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có:y'=2x2-2mx-2(3m2-1)

g(x)=x2-mx-3m2+1 là tam thức bậc hai có =13m2-4

Do đó hàm số có hai điểm cực trị khi và chỉ khi y' có hai nghiệm phân biệt

g(x) có hai nghiệm phân biệt

x1;x2 là các nghiệm của g(x) nên theo định lý Vi-ét, ta có

Đối chiếu với điều kiện (1), ta thấy chỉ m=23 thỏa mãn yêu cầu bài toán

Lời giải

Chọn D

Hàm số có 3 điểm cực trị m0

Khi đó 3 điểm cực trị của đồ thị hàm số là

Do tính chất đối xứng, ta có ABC cân tại đỉnh A

Vậy ABC chỉ có thể vuông cân tại đỉnh A

Kết hợp điều kiện ta có: m=±1 ( thỏa mãn).

Lưu ý: có thể sử dụng công thức b38a+1=0.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP