Câu hỏi:

13/07/2024 5,160

Xác định tính đúng, sai của các mệnh đề sau:

a) Các số nguyên tố đều là số lẻ;

b) Phương trình x2 + 1 = 0 có hai nghiệm nguyên phân biệt.

c) Mọi số nguyên lẻ đều không chia hết cho 2.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Mệnh đề “Các số nguyên tố đều là số lẻ” là mệnh đề sai do số nguyên tố 2 là số chẵn.

b) Ta có x2 ≥ 0 ∀ x ℝ nên x2 + 1 > 0 ∀ x ℝ.

Suy ra phương trình x2 + 1 = 0 không có nghiệm nguyên.

Do đó mệnh đề “Phương trình x2 + 1 = 0 có hai nghiệm nguyên phân biệt” là mệnh đề sai.

c) Số chia hết cho 2 là số chẵn nên mệnh đề “Mọi số nguyên lẻ đều không chia hết cho 2” là mệnh đề đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xác định tính đúng sai của mệnh đề đảo của các mệnh đề sau:

Nếu x > y thì x3 > y3.

Xem đáp án » 13/07/2024 4,736

Câu 2:

Xác định tính đúng sai của mệnh đề đảo của các mệnh đề sau:

Nếu số tự nhiên n có tổng các chữ số bằng 6 thì số tự nhiên n chia hết cho 3.

Xem đáp án » 13/07/2024 4,258

Câu 3:

Phát biểu mệnh đề phủ định của mệnh đề: “Mọi số tự nhiên có chữ số tận cùng bằng 0 đều chia hết cho 10”.

Xem đáp án » 13/07/2024 2,397

Câu 4:

Phát biểu mệnh đề P Q và xét tính đúng sai của chúng.

P: “x2 + y2 = 0”; Q: “x = 0 và y = 0”.

Xem đáp án » 13/07/2024 2,141

Câu 5:

Phát biểu mệnh đề phủ định của các mệnh đề sau:

a) 106 là hợp số;

b) Tổng số đo ba góc trong một tam giác bằng 180°.

Xem đáp án » 13/07/2024 2,099

Câu 6:

Phát biểu dưới dạng “điều kiện cần” đối với các mệnh đề sau:

a) Hai góc đối đỉnh thì bằng nhau.

b) Số tự nhiên có tổng các chữ số của nó chia hết cho 3 thì chia hết cho 3.

Xem đáp án » 13/07/2024 1,729

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store