Câu hỏi:

21/08/2022 419

Cho hình bình hành ABCD có diện tích S. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Đường thẳng BQ cắt AP tại E và cắt MC tại F. Đường thẳng DN cắt AP tại S và cắt MC tại R.

a) Chứng minh tứ giác EFRS là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD có diện tích S. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. (ảnh 1)

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Vì ABCDE là ngũ giác đều nên

b) Cho ngũ giác đều ABCDE. Gọi F là giao điểm hai đường chéo AC và BE.  (ảnh 1)

Mặt khác, ΔABC cân tại B nên:

b) Cho ngũ giác đều ABCDE. Gọi F là giao điểm hai đường chéo AC và BE.  (ảnh 2)

Suy ra ED // AC hay ED // CF.

Chứng minh tương tự ta có EF // CD

Mặt khác ED = DC (gt) nên tứ giác CEFD là hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP