Câu hỏi:

24/08/2022 582 Lưu

Tập nghiệm của phương trình 2x25x+1=x2+2x9

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

2x25x+1=x2+2x9 (*)

Bình phương hai vế của (*) ta có:

2x2 – 5x + 1 = x2 + 2x – 9

x2 – 7x + 10 = 0

x = 5 hoặc x = 2

Thay x = 5 vào (*) ta có:

2.525.5+1=52+2.5926=26 (thỏa mãn)

Thay x = 2 vào (*) ta có:

2.225.2+1=22+2.291=1 (không thể tồn tại)

Vậy tập nghiệm của phương trình (*) là: S = {5}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Xét hình (a) ta có:

Parabol có bề lõm hướng xuống nên a < 0

Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0

Parabol có đỉnh có hoành độ là: -b2a < 0. Mà a < 0 nên b < 0

Vậy a < 0, c > 0, b < 0.

b)

Xét hình (b) ta có:

Parabol có bề lõm hướng lên nên a > 0

Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0

Parabol có đỉnh có hoành độ là: -b2a > 0. Mà a > 0 nên b < 0

Vậy a > 0, c > 0, b < 0.

c)

Xét hình (c) ta có:

Parabol có bề lõm hướng lên nên a > 0

Parabol cắt trục Oy tại gốc tọa độ nên c = 0.

Parabol có đỉnh có hoành độ là: -b2a < 0. Mà a > 0 nên b > 0

Vậy a > 0, c = 0, b > 0.

d)

Xét hình (d) ta có:

Parabol có bề lõm hướng xuống nên a < 0

Parabol cắt trục Oy tại điểm có tung độ âm nên c < 0

Parabol có đỉnh có hoành độ là: -b2a > 0. Mà a < 0 nên b > 0

Vậy a < 0, c < 0, b > 0.

Câu 2

Lời giải

Đáp án đúng là: D

Parabol y = x2 – 2x + 3 có a = 1 > 0

Ta có: b2a=(2)2.1=1

Vậy hàm số nghịch biến trên khoảng (–∞; 1) và đồng biến trên khoảng (1; +∞).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP