Câu hỏi:

12/07/2024 1,174 Lưu

Tìm tập xác định của các hàm số sau:

a) y=x2+3x2;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Điều kiện xác định của hàm số là: –x2 + 3x – 2 ≥ 0

Xét tam thức f(x) = –x2 + 3x – 2 có:

a = –1 < 0

∆ = 32 – 4.(–1).(–2) = 1 > 0

f(x) = 0 có hai nghiệm phân biệt là: x1 = 2 ; x2 = 1

Do đó, ta có:

–x2 + 3x – 2 ≥ 0

1 ≤ x ≤ 2

Vậy tập xác định của hàm số là: D = [1; 2].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Xét hình (a) ta có:

Parabol có bề lõm hướng xuống nên a < 0

Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0

Parabol có đỉnh có hoành độ là: -b2a < 0. Mà a < 0 nên b < 0

Vậy a < 0, c > 0, b < 0.

b)

Xét hình (b) ta có:

Parabol có bề lõm hướng lên nên a > 0

Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0

Parabol có đỉnh có hoành độ là: -b2a > 0. Mà a > 0 nên b < 0

Vậy a > 0, c > 0, b < 0.

c)

Xét hình (c) ta có:

Parabol có bề lõm hướng lên nên a > 0

Parabol cắt trục Oy tại gốc tọa độ nên c = 0.

Parabol có đỉnh có hoành độ là: -b2a < 0. Mà a > 0 nên b > 0

Vậy a > 0, c = 0, b > 0.

d)

Xét hình (d) ta có:

Parabol có bề lõm hướng xuống nên a < 0

Parabol cắt trục Oy tại điểm có tung độ âm nên c < 0

Parabol có đỉnh có hoành độ là: -b2a > 0. Mà a < 0 nên b > 0

Vậy a < 0, c < 0, b > 0.

Câu 2

Lời giải

Đáp án đúng là: D

Parabol y = x2 – 2x + 3 có a = 1 > 0

Ta có: b2a=(2)2.1=1

Vậy hàm số nghịch biến trên khoảng (–∞; 1) và đồng biến trên khoảng (1; +∞).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP