Câu hỏi:

19/08/2025 767 Lưu

Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN AM (điểm N thuộc tia đối của tia DC). Gọi I là trung điểm của MN. Chứng minh rằng:

a) AM = AN

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia (ảnh 1)

a) Áp dụng định nghĩa và giả thiết của hình vuông ABCD ta được:

Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia (ảnh 2)

Δ ABM = Δ ADN( g - c - g )

Do đó AM = AN (cặp cạnh tương ứng bằng nhau)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính các góc của hình thang cân, biết có một góc bằng 60 độ (ảnh 1)

Xét hình thang cân ABCD ( AB//CD ) có D^= 600

Theo định nghĩa và giả thiết về hình thang cân ta có:

Tính các góc của hình thang cân, biết có một góc bằng 60 độ (ảnh 2)

Do góc A và góc D là hai góc cùng nằm một phía của

AB//CD nên chúng bù nhau hay A^+D^ = 1800.

⇒ A^ = 1800 - D^ = 1800 - 600 = 1200.

Do đó A^=B^= 1200.

Vậy C^=D^ = 600A^=B^ = 1200.

Lời giải

+ Hình thang cân có hai góc kề một cạnh đáy bằng nhau.

→ Đáp án C sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP