Lập phương trình chính tắc của parabol (P) biết rằng, (P) đi qua điểm A(2; 4). Khi đó hãy tìm điểm M thuộc (P) và cách tiêu điểm của (P) một khoảng bằng 5.
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Phương trình chính tắc của (P) có dạng y2 = 2px.
Do (P) đi qua điểm A(2; 4) nên ta có: 42 = 2p.2 ⇔ p = 4 .
Vậy phương trình chính tắc của (P) là: y2 = 8x với tiêu điểm F(2; 0).
Ta còn viết phương trình (P) dưới dạng: \(x = \frac{{{y^2}}}{8}\).
Ta có:
Do điểm M thuộc (P) nên toạ độ của điểm M có dạng \(M\left( {\frac{{{t^2}}}{8};t} \right)\)
Từ giả thiết MF = 5 ta suy ra:
MF2 = 25
\(\begin{array}{l} \Leftrightarrow {\left( {\frac{{{t^2}}}{8} - 2} \right)^2} + {t^2} = 25\\ \Leftrightarrow \frac{{{t^4}}}{{64}} - \frac{{{t^2}}}{2} + 4 + {t^2} = 25\\ \Leftrightarrow \frac{{{t^4}}}{{64}} + \frac{{{t^2}}}{2} - 21 = 0\,\,(*)\end{array}\)
Đặt t2 = X (X ≥ 0) ta có:
(*) ⇔ \(\frac{{{X^2}}}{{64}} + \frac{X}{2} - 21 = 0 \Leftrightarrow \left[ \begin{array}{l}X = 24(TM)\\X = - 56(L)\end{array} \right.\)
Với X = 24 ⇔ \(t = \pm 2\sqrt 6 \)
Vậy có hai điểm M thoả mãn là \(M\left( {3;\,\, \pm 2\sqrt 6 } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Elip \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có a2 = 25, b2 = 9, c = \(\sqrt {{a^2} - {b^2}} = \sqrt {25 - 9} = 4\) nên hai tiêu điểm là F1(–4; 0), F2(4; 0).
Do M nhìn hai tiêu điểm dưới một góc vuông nên M nằm trên đường tròn (C) tâm O đường kính F1F2 = 2.4 = 8 nên bán kính là R = 4.
Phương trình đường tròn (C) là:
x2 + y2 = 42 hay x2 + y2 = 16.
Khi đó toạ độ của M là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 16}\\{\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - {x^2}}\\{\frac{{{x^2}}}{{25}} + \frac{{16 - {x^2}}}{9} = 1}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - {x^2}}\\{9{x^2} + 400 - 25{x^2} = 225}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - {x^2}}\\{16{x^2} = 175}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - \frac{{175}}{{16}}}\\{{x^2} = \frac{{175}}{{16}}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \pm \frac{{5\sqrt 7 }}{4}\\y = \pm \frac{9}{4}\end{array} \right.\).
Vậy ta tìm được bốn điểm M thoả mãn là \(M\left( { \pm \frac{{5\sqrt 7 }}{4}; \pm \frac{9}{4}} \right)\).
Lời giải
Hướng dẫn giải
Ta có \[\overrightarrow {AB} = \left( {4;\,\,1} \right)\] là một vectơ chỉ phương của đường thẳng AB. Do đó \(\overrightarrow n = \left( { - 1;4} \right)\) là một vectơ pháp tuyến của AB.
Phương trình đường thẳng AB là:
–1(x + 1) + 4(y – 0) = 0
⇔ –x – 1 + 4y = 0
⇔ x – 4y + 1 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.