Câu hỏi:
12/07/2024 6,585
Để chuẩn bị cho buổi biểu diễn, 3 anh hề phải chọn trang phục biểu diễn cho mình gồm mũ, tóc giả, mũi và quần áo. Đoàn xiếc có 10 chiếc mũ, 6 bộ tóc giả, 5 cái mũi hề và 8 bộ quần áo hề. Hỏi các anh hề có bao nhiêu cách chọn trang phục biểu diễn ?
Quảng cáo
Trả lời:
Hướng dẫn giải
Để chọn trang phục biểu diễn, các anh hề có thể thực hiện 4 công đoạn, gồm:
– Công đoạn 1: chọn mũ;
– Công đoạn 2: chọn tóc giả;
– Công đoạn 3: chọn mũi giả;
– Công đoạn 4: chọn quần áo.
Xét các công đoạn:
Công đoạn 1:
Có 3 anh hề và 10 chiếc mũ nên số cách chọn mũ để đội (có sắp xếp) cho 3 anh hề là số các chỉnh hợp chập 3 của 10 và là:
\[A_{10}^3 = \frac{{10!}}{{(10 - 3)!}} = \frac{{10.9.8.7!}}{{7!}} = 10.9.8 = 720\] (cách).
Công đoạn 2:
Có 3 anh hề và 6 bộ tóc giả nên số cách chọn tóc giả (có sắp xếp) cho 3 anh hề là số các chỉnh hợp chập 3 của 6 và là:
\[A_6^3 = \frac{{6!}}{{(6 - 3)!}} = \frac{{6.5.4.3!}}{{3!}} = 6.5.4 = 120\](cách).
Công đoạn 3:
Có 3 anh hề và 5 mũi hề nên số cách chọn mũi hề (có sắp xếp) cho 3 anh hề là số các chỉnh hợp chập 3 của 5 và là:
\[A_5^3 = \frac{{5!}}{{(5 - 3)!}} = \frac{{5.4.3.2!}}{{2!}} = 5.4.3 = 60\](cách).
Công đoạn 4:
Có 3 anh hề và 8 bộ quần áo nên số cách chọn quần áo (có sắp xếp) cho 3 anh hề là số các chỉnh hợp chập 3 của 8 và là:
\[A_8^3 = \frac{{8!}}{{(8 - 3)!}} = \frac{{8.7.6.5!}}{{5!}} = 8.7.6 = 336\] (cách)
Như vậy, theo quy tắc nhân thì số cách chọn trang phục của 3 anh hề là:
720 . 120 . 60 . 336 = 1 741 824 000 (cách).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Số cách xếp 6 lá thư khác nhau vào 6 chiếc phong bì khác nhau (mỗi lá thư vào trong một phong bì) chính là số các hoán vị của 6, nghĩa là bằng:
P6 = 6! = 6 . 5 . 4 . 3 . 2 . 1 = 720 (cách).
Lời giải
Hướng dẫn giải
Các số từ 1 đến 999 999 có thể được viết một cách duy nhất dưới dạng \(\overline {abcdef} \), trong đó mỗi kí hiệu a, b, c, d, e, f nhận một trong các giá trị 0; 1; 2;..., 9. Chẳng hạn số \(\overline {001234} \) được hiểu là số 1234.
Để tạo thành một số \(\overline {abcdef} \) thoả mãn yêu cầu chứa đúng một chữ số 1 và đúng một chữ số 2, ta có thể tiến hành qua hai công đoạn:
– Công đoạn 1: chọn ra 2 kí hiệu trong số a, b, c, d, e, f để thay bằng các chữ số 1; 2;
– Công đoạn 2: thay 4 kí hiệu còn lại, mỗi kí hiệu bằng một chữ số bất kì trong số tám chữ số còn lại 0; 3; 4;...; 9.
Xét công đoạn 1: Chọn ra 2 kí hiệu từ 6 kí hiệu để thay chúng tương ứng bằng 1; 2 (có sắp xếp), số cách chọn là số các chỉnh hợp chập 2 của 6 và là:
\(A_6^2 = \frac{{6!}}{{(6 - 2)!}} = \frac{{6.5.4!}}{{4!}} = 6.5 = 30\) (cách)
Xét công đoạn 2: Thay 4 kí hiệu còn lại, mỗi kí hiệu bằng một chữ số bất kì trong số tám chữ số còn lại 0; 3; 4;...; 9. Tức là mỗi kí hiệu còn lại có thể được thay bằng 8 cách khác nhau. Do đó có tổng cộng: 8 . 8 . 8 . 8 = 4 096 (cách).
Vậy, theo quy tắc nhân, số các số từ 1 đến 999 999 cần tìm là:
30 . 4 096 = 122 880 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.