Câu hỏi:

18/09/2022 827

Cho các số thực a, b, c thỏa mãn 4a+c>8+2b  a+b+c<1 . Khi đó số nghiệm thực phân biệt của phương trình x3+ax2+bx+c=0  bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình: x3+ax2+bx+c=01

Đặt: fx=x3+ax2+bx+c

Từ giả thiết 4a+c>8+2b8+4a2b+c>0a+b+c<11a+b+c<0f1<0

Do đó f2.f1<0 nên phương trình (1) có ít nhất một nghiệm trong 2;  1

Ta nhận thấy:

limxfx= f2>0 nên phương trình (1) có ít nhất một nghiệm α;  2

Tương tự: limx+fx=+ f1<0 nên phương trình (1) có ít nhất một nghiệm β1;  +

Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các giới hạn sau:

a)lim4n2+2n2n.

Xem đáp án » 12/07/2024 2,226

Câu 2:

Chứng minh phương trình x2sinx+xcosx+1=0  có ít nhất một nghiệm.

Xem đáp án » 13/07/2024 2,189

Câu 3:

Tính giới hạn sau  lim4n25n2n.

Xem đáp án » 12/07/2024 2,105

Câu 4:

Cho phương trình x3+ax2+bx+c=0(1) trong đó a, b, c là các tham số thực. Chọn khẳng định đúng trong các khẳng định sau

A. Phương trình (1) vô nghiệm với mọi a, b, c

B. Phương trình (1) có ít nhất một nghiệm với mọi a, b, c

C. Phương trình (1) có ít nhất hai nghiệm với mọi a, b, c

D. Phương trình (1) có đúng ba nghiệm phân biệt với mọi a, b, c

Xem đáp án » 18/09/2022 2,045

Câu 5:

Tìm các giới hạn sau:

          a)  lim9n2+2n3n4n+3.

Xem đáp án » 12/07/2024 929

Câu 6:

Tìm các giới hạn sau: limn2+2n+3n2+n33.

Xem đáp án » 12/07/2024 874

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store