Câu hỏi:

22/09/2022 769

Cho hình vuông ABCD và tam giác đều SAB nằm trong hai mặt phẳng khác nhau. Gọi M là điểm di động trên đoạn AB. Mặt phẳng α đi qua M song song với SBC cắt hình chóp S.ABCD theo thiết diện là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Cho hình vuông ABCD và tam giác đều SAB nằm trong hai mặt phẳng khác nhau. Gọi M là điểm di động trên đoạn AB.  (ảnh 1)

Gọi MN=αABCD với NCD, ta có

α // SBCSBCABCD=BCMN // BC.

Gọi NK=αSCD với KSD, ta có

α // SBCSBCSCD=SCKN // SC.

Do MN // BC // AD  nên  MN // SAD.

Gọi KQ=αSAB với QSA, ta có KQ // AD.

Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng α là hình thang MNKQ có đáy MN và QK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Cho hình chóp S.ABCD có đáy C là hình thang cân với cạnh bên BC = 2, hai đáy AB = 6, CD = 4 (ảnh 1)

Trong mặt phẳng SAD kẻ MN // AD, SDC kẻ NP // DC, SBC kẻ PQ // BC.

Suy ra thiết diện của P và hình chóp S.ABCD là tứ giác MNPQ.

Gọi CH là đường cao trong hình thang ABCD ta có CH=2212=3.

Suy ra SABCD=AB+DC2CH=4+62.3=53.

Do MNPQ đồng dạng với ABCD theo tỷ số k=13 nên SMNPQ=5332=539.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Tam giác SBD đều. Một mặt phẳng (P) song song với (SBD) và đi qua điểm I thuộc cạnh AC (không trùng với A hoặc C). Tìm thiết diện của (P) và hình chóp. (ảnh 1)

Gọi O=ACDB.

Do SO nằm trong SBD nên SO // α.

Mặt phẳng (SAC) chứa SO và có điểm chung với αI, do đó SACα=IK với IK // SO và KSA.

Tương tự SABα=KE với KE // SB và EAB.

SADα=KF với KF // SD và FAD.

Suy ra thiết diện của (P) với hình chóp S.ABCD là tam giác KEF.

Ta có EFBD=AEAB=AFAD=AKAS=KESB=KFSD

ΔSBD đồng dạng với ΔKEF.

Tam giác SBD là tam giác đều nên ΔKEF cũng là tam giác đều.

Vậy thiết diện của (P) và hình chóp S.ABCD là tam giác đều.

Câu 3

Đặc điểm nào sau đây đúng với hình lăng trụ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay