Câu hỏi:
11/07/2024 519
Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác và gọi I là giao điểm của các đường phân giác của tam giác. Chứng minh ba điểm A, I, G thẳng hàng.
Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác và gọi I là giao điểm của các đường phân giác của tam giác. Chứng minh ba điểm A, I, G thẳng hàng.
Quảng cáo
Trả lời:
Vẽ phân giác AD của tam giác ABC.
Xét DABD và DACD có:
AB = AC (do DABC cân tại A),
(do AD là phân giác của ),
AD là cạnh chung.
Do đó DABD = DACD (c.g.c)
Suy ra DB = DC.
Khi đó AD vừa là đường phân giác vừa là đường trung tuyến của tam giác ABC.
Mà G là trọng tâm của tam giác và I là giao điểm của các đường phân giác của tam giác ABC.
Suy ra hai điểm I và G đều thuộc AD.
Khi đó ba điểm A, I, G thẳng hàng.
Vậy ba điểm A, I, G thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong DCAB có: (tổng ba góc trong một tam giác).
Suy ra .
Vì BI là phân giác của góc ABC nên
Vì CI là phân giác của góc ACB nên
Suy ra .
Trong DCIB có: (tổng ba góc trong một tam giác).
Mà (chứng minh trên)
Suy ra
Do đó
Vậy
Lời giải
Vì AD là phân giác của góc BAC nên .
Xét ΔADH và ΔADK có:
,
AD là cạnh chung,
(chứng minh trên).
Do đó ΔADH = ΔADK (cạnh huyền – góc nhọn).
Suy ra DH = DK (hai cạnh tương ứng).
Vậy DH = DK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.