Câu hỏi:

13/07/2024 3,595

Cho hình thang ABCD (AB // CD) có M là trung điểm của BC AMD^=90°. Chứng minh: DM là phân giác của ADC^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang ABCD (AB // CD) có M là trung điểm của BC và .góc AMD = 90 độ Chứng minh: DM là phân giác của góc ADC (ảnh 1)
Gọi E là giao điểm của AB và DM

Có AB // CD 

AEM^=MDC^EBM^=DCM^

Xét ΔBEM ΔCDM có:

BME^=CMD^ (2 góc đối đỉnh)

BM = CM (M là trung điểm BC)

EBM^=DCM^ (so le trong)

ΔBEM=ΔDCMg.c.gEM=MD

=> M là trung điểm của ED

Xét ΔAED có:

AM là đường cao AMDEdoAMD^=90° 

AM là đường trung tuyến (M là trung điểm của ED)

=> ΔAED cân tại A 

=> AED^=ADM^ 

Mà AEM^=MDC^

ADM^=CDM^=AEM^

=> DM là phân giác của ADC^

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC . Trên tia  AC lấy điểm  D sao cho AD = AB . Trên tia AB   lấy điểm E  sao cho AE = AC (ảnh 1)
AB=ADΔABD cân tại A
ABD^=180°BAC^2            1
AE=ACΔAEC cân tại A
ACE^=AEC^=180°BAC^2                  2
Từ (1), (2) AEC^=ABD^
=> BD // EC
=> BDCE là hình thang

Lời giải

Cho hình thang ABCD (AB // CD)  a) Phân giác của góc A và góc D cắt nhau tại điểm I trên cạnh BC. Chứng minh: AD = AB + CD. (ảnh 1)

a) Trên cạnh AD lấy điểm E sao cho AIE^=AIB^ 

AI là tia phân giác của BAD^ BAI^=DAI^=BAD^2    (1)

DI là tia phân giác của ADC^ ADI^=CDI^=ADC^2    (2)

BAD^+ADC^=180° (AB // CD) (3)

Từ (1), (2) và (3) => DAI^+ADI^=BAD^2+ADC^2=90°

Mà ΔAID :DAI^+AID^+AID^=180°

=> AID^=90°

BIA^+AID^+DIC^=180° 

=> BIA^+DIC^=90° 

AIE^+EID^=90°AID^=90° và AIE^=AIB^

=> DIE^=DIC^

Xét ΔAIE và ΔAIB có:

EAI^=BAI^ 

AI chung

AIE^=AIB^ΔAEI=ΔBAIg.c.g

=> AE = BD (4)

Chứng minh tương tự có ΔDEI=ΔDCIg.c.g => DE = DC (5)

Mà AD = AE + dE (6)

Từ (4), (5) và (6) => AD = AB + DC  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay