CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang ABCD (AB//CD). Các đường phân giác ngoài của  góc A và góc D cắt nhau tại E a) EF song song với AB và CD (ảnh 1)

a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: ADE^=12D^ ngoài, DAE^=12A^ ngoài.

A ngoài + D ngoài = 1800 (do AB//CD)

ADE^+DAE^=900, tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F là trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

Lời giải

Cho hình thang cân ABCD (AB < CD). Vẽ AH vuông CD. Chứng minh rằng:  a) HD bằng đoạn thẳng nối trung điểm hai đường chéo; (ảnh 1)

a) Vẽ BKCD ta được AH // BK và AB // HK

AB=HKΔADH=ΔBCKHD=KC.

Ta có: 

HD+KC=CDHK2HD=CDAB
HD=CDAB2.

Theo ví dụ 4 thì đoạn thẳng PQ nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy. Vậy HD = PQ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP