Dạng 2. Sử dụng định nghĩa và định lí về đường trung bình của hình thang để chứng minh có đáp án
29 người thi tuần này 4.6 3.9 K lượt thi 9 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
2 câu Trắc nghiệm Toán 8 Bài 10: Đường thẳng song song với một đường thẳng cho trước có đáp án (Vận dụng cao)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
11 câu Trắc nghiệm Toán 8 Bài 3: Rút gọn phân thức có đáp án (Nhận biết)
15 câu Trắc nghiệm Toán 8: Ôn tập chương 2 có đáp án (Thông hiểu)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Ta có È là đường trung bình của hình thang ABCD.
Þ EF//AB.
Suy ra EF ^ AD
Khi đó EF vừa trung tuyến, vừa là đường cao của tam giác AFD Þ ĐPCM.
Lời giải
b) Tam giác AFD cân tại F nên
Suy raLời giải
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: ngoài, ngoài.
Mà ngoài + ngoài = 1800 (do AB//CD)
, tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F là trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
Lời giải
b) Từ ý a),
Lời giải

a) Vẽ ta được AH // BK và AB // HK
Ta có:
Theo ví dụ 4 thì đoạn thẳng PQ nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy. Vậy HD = PQ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.