Câu hỏi:

12/07/2024 6,918

Cho hình bình hành ABCD. Vẽ ra ngoài hình bình hành các tam giác ABM vuông cân tại A, tam giác BCN vuông cân tại C. Chứng minh rằng tam giác DMN vuông cân.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Vẽ ra ngoài hình bình hành các tam giác ABM vuông cân tại A, tam giác BCN vuông cân tại C.  (ảnh 1)

Ta đặt ADC=α thì DAM=90°+α;NCD=90°+α.

ΔDAM và ΔNCD có:

AM=CD=AB;DAM=NCD=90°+α;AD=CN=BC.

Do đó ΔDAM=ΔNCDc.g.c

DM=DN          (1)

và DMA=NDC.

Kéo dài MA cắt CD tại H. Ta có:

MAABMHCD.

Xét ΔMDH có DMA+ADM+α=90°

NDC+ADM+α=90°

Hay MDN=90°     (2)

Từ (1) và (2) suy ra ΔDMN vuông cân tại D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A. Gọi M là trung điểm của DE. Chứng minh rằng hai đường thẳng MA và BC vuông góc với nhau.

Xem đáp án » 12/07/2024 12,529

Câu 2:

Cho tam giác nhọn ABC có trực tâm H. Chứng minh rằng chu vi của tam giác ABC lớn hơn 32HA+HB+HC.

Xem đáp án » 12/07/2024 4,453

Câu 3:

Cho hình bình hành ABCD (AD < AB) . Vẽ ra ngoài hình bình hành tam giác ABM cân tại B và tam giác ADN cân tại D sao cho ABM=ADN.

a) Chứng minh rằng CM = CN

Xem đáp án » 12/07/2024 3,289

Câu 4:

Cho đoạn thẳng PQ và một điểm A ở ngoài đường thẳng PQ. Vẽ hình hình hành ABCD có đường chéo BD // PQ và BD // PQ. Chứng minh rằng mỗi đường thẳng BC và CD luôn đi qua một điểm cố định.

Xem đáp án » 12/07/2024 2,929

Câu 5:

Cho hình thang cân ABCD (AB // CD) và một điểm O ở trong hình này. Chứng minh rằng có một tứ giác mà bốn cạnh lần lượt bằng OA, OB, OC, OD và bốn đỉnh nằm trên bốn cạnh của hình thang cân.

Xem đáp án » 12/07/2024 2,639

Câu 6:

Cho hình bình hành ABCD và đường thẳng xy không cắt các cạnh của hình bình hành. Qua các đỉnh A, B, C, D vẽ các đường thẳng vuông góc với xy, cắt xy lần lượt tại A', B', C', D'. Chứng minh rằng: AA' + CC' = BB' + DD' 

Xem đáp án » 12/07/2024 1,935

Bình luận


Bình luận