Câu hỏi:

12/07/2024 3,024

Cho đoạn thẳng PQ và một điểm A ở ngoài đường thẳng PQ. Vẽ hình hình hành ABCD có đường chéo BD // PQ và BD // PQ. Chứng minh rằng mỗi đường thẳng BC và CD luôn đi qua một điểm cố định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đoạn thẳng PQ và một điểm A ở ngoài đường thẳng PQ. Vẽ hình hình hành ABCD có đường chéo BD // PQ và BD // PQ. (ảnh 1)

Qua A vẽ đường thẳng xy // PQ 

Trên tia Ax lấy điểm M, trên tia Ay lấy điểm N sao cho AM = AN = PQ

Như vậy các điểm M và N cố định.

Tứ giác AMBD có hai cạnh đối diện song song và bằng nhau nên là hình bình hành => BM // AD

Mặt khác, BC // AD nên ba điểm B, M, C thẳng hàng (tiên đề Ơ-clit)

Do đó đường thẳng BC đi qua điểm cố định M.

Chứng minh tương tự, ta được đường thẳng CD đi qua điểm cố định N.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A. Gọi M là trung điểm của DE. Chứng minh rằng hai đường thẳng MA và BC vuông góc với nhau.

Xem đáp án » 12/07/2024 16,304

Câu 2:

Cho hình bình hành ABCD. Vẽ ra ngoài hình bình hành các tam giác ABM vuông cân tại A, tam giác BCN vuông cân tại C. Chứng minh rằng tam giác DMN vuông cân.

Xem đáp án » 12/07/2024 7,184

Câu 3:

Cho tam giác nhọn ABC có trực tâm H. Chứng minh rằng chu vi của tam giác ABC lớn hơn 32HA+HB+HC.

Xem đáp án » 12/07/2024 5,447

Câu 4:

Cho hình bình hành ABCD (AD < AB) . Vẽ ra ngoài hình bình hành tam giác ABM cân tại B và tam giác ADN cân tại D sao cho ABM=ADN.

a) Chứng minh rằng CM = CN

Xem đáp án » 12/07/2024 3,417

Câu 5:

Cho hình thang cân ABCD (AB // CD) và một điểm O ở trong hình này. Chứng minh rằng có một tứ giác mà bốn cạnh lần lượt bằng OA, OB, OC, OD và bốn đỉnh nằm trên bốn cạnh của hình thang cân.

Xem đáp án » 12/07/2024 2,762

Câu 6:

Cho hình bình hành ABCD và đường thẳng xy không cắt các cạnh của hình bình hành. Qua các đỉnh A, B, C, D vẽ các đường thẳng vuông góc với xy, cắt xy lần lượt tại A', B', C', D'. Chứng minh rằng: AA' + CC' = BB' + DD' 

Xem đáp án » 12/07/2024 2,090
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua