Câu hỏi:

12/07/2024 2,075

Cho hình bình hành ABCD và đường thẳng xy không cắt các cạnh của hình bình hành. Qua các đỉnh A, B, C, D vẽ các đường thẳng vuông góc với xy, cắt xy lần lượt tại A', B', C', D'. Chứng minh rằng: AA' + CC' = BB' + DD' 

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD và đường thẳng xy không cắt các cạnh của hình bình hành. Qua các đỉnh A, B, C, D (ảnh 1)

Gọi O là giao điểm của AC và BD. Vẽ OO'xy. 

Ta có: AA' // BB' // CC' // DD' // OO'

Xét hình thang AA'C'C có OA = OC và OO' = AA' nên O'A' = O'C'

Do đó OO' là đường trung bình của hình thang AA'C'COO'=AA'+CC'2 hay AA' + CC' = 2OO'

Xét hình thang DD'B'B, cũng chứng minh tương tự, ta có: BB' + DD' = 2OO'

Từ đó suy ra: AA' + CC' = BB' + DD' 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A. Gọi M là trung điểm của DE. Chứng minh rằng hai đường thẳng MA và BC vuông góc với nhau.

Xem đáp án » 12/07/2024 15,771

Câu 2:

Cho hình bình hành ABCD. Vẽ ra ngoài hình bình hành các tam giác ABM vuông cân tại A, tam giác BCN vuông cân tại C. Chứng minh rằng tam giác DMN vuông cân.

Xem đáp án » 12/07/2024 7,144

Câu 3:

Cho tam giác nhọn ABC có trực tâm H. Chứng minh rằng chu vi của tam giác ABC lớn hơn 32HA+HB+HC.

Xem đáp án » 12/07/2024 5,302

Câu 4:

Cho hình bình hành ABCD (AD < AB) . Vẽ ra ngoài hình bình hành tam giác ABM cân tại B và tam giác ADN cân tại D sao cho ABM=ADN.

a) Chứng minh rằng CM = CN

Xem đáp án » 12/07/2024 3,389

Câu 5:

Cho đoạn thẳng PQ và một điểm A ở ngoài đường thẳng PQ. Vẽ hình hình hành ABCD có đường chéo BD // PQ và BD // PQ. Chứng minh rằng mỗi đường thẳng BC và CD luôn đi qua một điểm cố định.

Xem đáp án » 12/07/2024 3,012

Câu 6:

Cho hình thang cân ABCD (AB // CD) và một điểm O ở trong hình này. Chứng minh rằng có một tứ giác mà bốn cạnh lần lượt bằng OA, OB, OC, OD và bốn đỉnh nằm trên bốn cạnh của hình thang cân.

Xem đáp án » 12/07/2024 2,737