Câu hỏi:

12/07/2024 2,910

Cho hình thang cân ABCD (AB // CD) và một điểm O ở trong hình này. Chứng minh rằng có một tứ giác mà bốn cạnh lần lượt bằng OA, OB, OC, OD và bốn đỉnh nằm trên bốn cạnh của hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD (AB // CD) và một điểm O ở trong hình này. Chứng minh rằng có một tứ giác mà bốn cạnh lần lượt bằng OA, OB, OC, OD (ảnh 1)

Qua O dựng một đường thẳng song song với BC cắt AB và CD lần lượt tại E và G. Qua O dựng một đường thẳng song song với CD cắt AD tại H.

Qua E dựng một đường thẳng song song với OC cắt BC tại F.

Khi đó tứ giác EFGH thỏa mãn đề bài.

Thật vậy, các tứ giác AEOH, HOGD là những hình thang cân.

=> OA = EH, OD = HG        (1)

Tứ giác EFCO là hình bình hành => OC = EF      (2)

và OE = CF. Suy ra OG = BF

Vậy tứ giác OBFG là hình bình hành => OB = GF (3)

Từ (1), (2), (3) suy ra tứ giác EFGH thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A.  (ảnh 1)

Vẽ hình bình hành DAEF. Khi đó AF đi qua M.

Gọi H là giao điểm của MA với BC.

Ta có: EF=AD=AB.

AEF+DAE=180° mà BAC+DAE=180° nên

AEF=BAC.ΔAEF=ΔCABg.c.gA1=C1.

Ta có: A1+A2=90°C1+A2=90°H=90°.

Do đó: MABC.

Lời giải

Cho hình bình hành ABCD. Vẽ ra ngoài hình bình hành các tam giác ABM vuông cân tại A, tam giác BCN vuông cân tại C.  (ảnh 1)

Ta đặt ADC=α thì DAM=90°+α;NCD=90°+α.

ΔDAM và ΔNCD có:

AM=CD=AB;DAM=NCD=90°+α;AD=CN=BC.

Do đó ΔDAM=ΔNCDc.g.c

DM=DN          (1)

và DMA=NDC.

Kéo dài MA cắt CD tại H. Ta có:

MAABMHCD.

Xét ΔMDH có DMA+ADM+α=90°

NDC+ADM+α=90°

Hay MDN=90°     (2)

Từ (1) và (2) suy ra ΔDMN vuông cân tại D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP