Câu hỏi:

13/07/2024 1,019

Cho tam giác ABCABBC  có các góc đều nhọn, đường phân giác AD. Các đường cao BE, CF  cắt nhau ở H, đường phân giác AD. Vẽ tia Dx sao cho CDx^=BAC^  (tia Dx và A cùng phía đối với BC) tia Dx cắt AC  K.  Chứng minh: tam giác ABE đồng dạng với ACF.Từ đó suy ra: AE.AC = AF. AB.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét ΔABE  ΔACF  có:

                                                       E^=F^   ( =900)

                                                        A^  góc chung

Do đó:ΔABE~ΔACF  (g.g)    AEAF=ABAC

Hay  AE.AC=AF.AB

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM, cắt AB và AC theo thứ tự tại  E và F.

Qua A vẽ đường thẳng song song với BC, cắt EF ở K. Chứng minh rằng K là trung điểm của EF.

Xem đáp án » 13/07/2024 1,288

Câu 2:

Cho tam giác vuông ABCA^=900  AB=9cm, AC=12cm . Dựng AD vuông góc với BCDBC . Tia phân giác góc B cắt AC tại E.

Tính diện tích các tam giác ABD và ACD.

Xem đáp án » 12/07/2024 991

Câu 3:

Cho tam giác ABC vuông tại A,AB=15cm;AC=20cm . Kẻ đ­ường cao AH.

 Chứng minh : ΔABC ~ΔHBA  từ đó suy ra:  AB2=BC.BH

Xem đáp án » 13/07/2024 872

Câu 4:

Cho hình chữ nhật ABCD, gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh hai tam giác ADF và CBE  đồng dạng với nhau.

Xem đáp án » 12/07/2024 866

Câu 5:

Cho hình thang ABCD( AB // CD).

Biết AB=3cm;AD=2,5cm;BD=6cm DBC^=DAB^ .

Chứng minh hai tam giác ADB và BCD đồng dạng.

Xem đáp án » 13/07/2024 784

Câu 6:

Cho tam giác vuông ABCA^=900  AB=9cm, AC=12cm . Dựng AD vuông góc với BCDBC . Tia phân giác góc B cắt AC tại E.

Tính độ dài các đoạn thẳng AD,DB và DC.

Xem đáp án » 13/07/2024 732

Bình luận


Bình luận