Câu hỏi:

19/08/2025 6,854 Lưu

Cho ABC cân tại B có đường cao BE. Trên tia đối của tia EB lấy điểm D sao cho ED = EB. Chứng minh: tứ giác ABCD là hình thoi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho ABC cân tại B có đường cao BE. Trên tia đối của tia EB lấy điểm D sao cho ED = EB. Chứng minh: tứ giác ABCD là hình thoi. (ảnh 1)

ABC cân tại B có đường cao BE => BE là đường trung tuyến

=> EA = EC                                                            (1)

Ta có : EB = ED (gt)                                                         (2)

Từ (1) và (2) => ABCD là hình bình hành.

Vì BE là đường cao của ABC => BEAC

Hình bình hành ABCD có BEAC => ABCD là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có AD vuông AC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi. (ảnh 1)

Vì ABCD  là hình bình hành => AB//CDAD//BC

Tứ giác AMCN có AM=CNAM//CNAMCN là hình bình hành (1)

Tứ giác AMND có AM=DNAM//DNAMND là hình bình hành

=> AD // MN, mà ADACMNAC (2)

Từ (1) và (2) => AMCN là hình thoi.

Lời giải

Cho tam giác ABC cân tại A. Gọi D, E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh: tứ giác AEDF là hình thoi. (ảnh 1)

Cách 1: Vì D, Elà trung điểm của các cạnh BC, AB => DE là đường trung bình của ΔABC

=> DE=12AC  (1)

Vì D, F là trung điểm của các cạnh BC, AC, => DF là đường trung bình của ΔABC

=> DF=12AB (2)

Vì E, F là trung điểm của các cạnh  AB, AC => AE=12AB,AF=12AC (3)

Tam giác ABC cân tại A => AB = AC (4)

Từ (1), (2), (3), (4) => AE = ED = DF = FA.

Tứ giác AEDFcó AE = ED = DF = FA => AEDF là hình thoi.

Cách 2: Vì D, F là trung điểm của các cạnh BC, AC => DF là đường trung bình của ΔABC

=> DF//ABDF=12AB

Mà AB = AE và A, E, B thẳng hàng

Tứ giác  AEDF có DF//AEDF=AEEADF là hình bình hành.

Hình bình hành AEDF có AE=AF  =12AB=12ACAEDF là hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP