Câu hỏi:

19/08/2025 36,046 Lưu

Cho hình bình hành ABCD có ADAC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành ABCD có AD vuông AC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi. (ảnh 1)

Vì ABCD  là hình bình hành => AB//CDAD//BC

Tứ giác AMCN có AM=CNAM//CNAMCN là hình bình hành (1)

Tứ giác AMND có AM=DNAM//DNAMND là hình bình hành

=> AD // MN, mà ADACMNAC (2)

Từ (1) và (2) => AMCN là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A. Gọi D, E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh: tứ giác AEDF là hình thoi. (ảnh 1)

Cách 1: Vì D, Elà trung điểm của các cạnh BC, AB => DE là đường trung bình của ΔABC

=> DE=12AC  (1)

Vì D, F là trung điểm của các cạnh BC, AC, => DF là đường trung bình của ΔABC

=> DF=12AB (2)

Vì E, F là trung điểm của các cạnh  AB, AC => AE=12AB,AF=12AC (3)

Tam giác ABC cân tại A => AB = AC (4)

Từ (1), (2), (3), (4) => AE = ED = DF = FA.

Tứ giác AEDFcó AE = ED = DF = FA => AEDF là hình thoi.

Cách 2: Vì D, F là trung điểm của các cạnh BC, AC => DF là đường trung bình của ΔABC

=> DF//ABDF=12AB

Mà AB = AE và A, E, B thẳng hàng

Tứ giác  AEDF có DF//AEDF=AEEADF là hình bình hành.

Hình bình hành AEDF có AE=AF  =12AB=12ACAEDF là hình thoi.

Lời giải

Cho ABC nhọn , đường cao tại AD, BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I, K. Tia phân giác của góc EBC cắt AD, AC  (ảnh 1)

Gọi O là giao điểm của AK và BN.

Ta có CBE^=CAD^( vì cùng phụ với ACB^12CBE^=12CAD^

CAO^=DAO^=CBO^=EBO^

Ta có ABD vuông tại D nên DAB^+DBA^=900

DAB^+IBA^+IBO^+OBD^=900DAB^+IBA^+IBO^+OAD^=900                                (1)ABO^+OAB^=900

Suy ra ABO vuông tại O AKBN tại O.

AMN có AO là đường cao, đồng thời là đường phân giác nên AMN cân tại A

Do đó AO là đường trung trực của đoạn thẳng MN IM=INKM=KN(2)

và O là trung điểm của MN      (3)

BIK có BO là đường cao, đồng thời là đường phân giác nên BIK cân tại B

Do đó BO là đường trung trực của đoạn thẳng IK => IM = KM    (4)

và O là trung điểm của IK         (5)

Từ (2) và (4) suy ra tứ giác MINK có IM = KM = KN = IN

Do đó tứ giác MINK là hình thoi.

CAO^=DAO^=CBO^=EBO^

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP