Câu hỏi:

13/07/2024 6,067

Cho hình thang ABCD (AB // CD) . Gọi M, N , P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Chứng minh: MNPQ là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình thang ABCD (AB // CD) . Gọi M, N , P, Q lần lượt là trung điểm của AB, BC, CD, DA.  a) Chứng minh: MNPQ là hình bình hành. (ảnh 1)
a) Vì  M, N là trung điểm của AB, BC => MN là đường trung bình của ABC

MN//ACMN=12AC                                                           (1)

Vì P, Q là trung điểm của CD, DA => PQlà đường trung bình của tam giác ADC

PQ//ACPQ=12AC  (2)

Từ (1) và (2) => MNPQ là hình bình hành..

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có AD vuông AC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi. (ảnh 1)

Vì ABCD  là hình bình hành => AB//CDAD//BC

Tứ giác AMCN có AM=CNAM//CNAMCN là hình bình hành (1)

Tứ giác AMND có AM=DNAM//DNAMND là hình bình hành

=> AD // MN, mà ADACMNAC (2)

Từ (1) và (2) => AMCN là hình thoi.

Lời giải

Cho tam giác ABC cân tại A. Gọi D, E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh: tứ giác AEDF là hình thoi. (ảnh 1)

Cách 1: Vì D, Elà trung điểm của các cạnh BC, AB => DE là đường trung bình của ΔABC

=> DE=12AC  (1)

Vì D, F là trung điểm của các cạnh BC, AC, => DF là đường trung bình của ΔABC

=> DF=12AB (2)

Vì E, F là trung điểm của các cạnh  AB, AC => AE=12AB,AF=12AC (3)

Tam giác ABC cân tại A => AB = AC (4)

Từ (1), (2), (3), (4) => AE = ED = DF = FA.

Tứ giác AEDFcó AE = ED = DF = FA => AEDF là hình thoi.

Cách 2: Vì D, F là trung điểm của các cạnh BC, AC => DF là đường trung bình của ΔABC

=> DF//ABDF=12AB

Mà AB = AE và A, E, B thẳng hàng

Tứ giác  AEDF có DF//AEDF=AEEADF là hình bình hành.

Hình bình hành AEDF có AE=AF  =12AB=12ACAEDF là hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay