Câu hỏi:

19/08/2025 5,888 Lưu

Cho ΔABC cân tại B. Đường thẳng qua C song song với AB cắt tia phân giác của ABC^  tại D. Chứng minh: tứ giác ABCD là hình thoi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho ABC cân tại B. Đường thẳng qua C song song với AB cắt tia phân giác của góc ABC  tại D. Chứng minh: tứ giác ABCD là hình thoi. (ảnh 1)

CD//ABABD^=BDC^ (so le trong)        (1)

Vì BD là phân giác của ABC^ABD^=DBC^ (2)

Từ (1) và (2) => BDC^=DBC^ΔBCD cân tại D  CB=CD         (3)

ABC cân tại B => CB = AB (4)

Từ (3) và (4) => AB = CD.

Tứ giác ABCD có AB=CDAB//CDABCD là hình bình hành.

Cách 1: Hình bình hành ABCD có DB là phân giác của ABC^=> ABCD là hình thoi.

Cách 2: Hình bình hành ABCD có CB = AB => ABCD là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có AD vuông AC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi. (ảnh 1)

Vì ABCD  là hình bình hành => AB//CDAD//BC

Tứ giác AMCN có AM=CNAM//CNAMCN là hình bình hành (1)

Tứ giác AMND có AM=DNAM//DNAMND là hình bình hành

=> AD // MN, mà ADACMNAC (2)

Từ (1) và (2) => AMCN là hình thoi.

Lời giải

Cho ABC nhọn , đường cao tại AD, BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I, K. Tia phân giác của góc EBC cắt AD, AC  (ảnh 1)

Gọi O là giao điểm của AK và BN.

Ta có CBE^=CAD^( vì cùng phụ với ACB^12CBE^=12CAD^

CAO^=DAO^=CBO^=EBO^

Ta có ABD vuông tại D nên DAB^+DBA^=900

DAB^+IBA^+IBO^+OBD^=900DAB^+IBA^+IBO^+OAD^=900                                (1)ABO^+OAB^=900

Suy ra ABO vuông tại O AKBN tại O.

AMN có AO là đường cao, đồng thời là đường phân giác nên AMN cân tại A

Do đó AO là đường trung trực của đoạn thẳng MN IM=INKM=KN(2)

và O là trung điểm của MN      (3)

BIK có BO là đường cao, đồng thời là đường phân giác nên BIK cân tại B

Do đó BO là đường trung trực của đoạn thẳng IK => IM = KM    (4)

và O là trung điểm của IK         (5)

Từ (2) và (4) suy ra tứ giác MINK có IM = KM = KN = IN

Do đó tứ giác MINK là hình thoi.

CAO^=DAO^=CBO^=EBO^

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP