Câu hỏi:

13/07/2024 3,469

b) Gọi AH là đường cao của tam giác ABC. Chứng minh EHMF là hình thang cân

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có EF là đường trung bình trong tam giác ABC, suy ra . Theo giả thiết, AB < AC   suy ra  HB < HA  , do đó H  thuộc đoạn MB . Vậy EHMF  là hình thang. (1)

Tam giác HAB  vuông tại H, ta có HE = EA = EB, từ đó suy ra ΔAHE cân tại E

Ta có: EF//BCAHBCEFAH  suy ra ΔAHE  cân tại E  có EF là đường cao đồng thời là đường phân giác  AEF^=HEF^

AEF^=MFE^ . Do đó MEF^=HEF^ (2)

 Từ (1) và (2) suy ra: EHMF  là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC  vuông tại A (AB < AC) , trung tuyến AM . E, F  lần lượt là trung điểm của AB, AC.  a) Chứng minh rằng AEMF  là hình chữ nhật. (ảnh 1)

a) Theo tính chất tam giác vuông, ta có AM = MC = MB.

Tam giác CMA  cân tại A  và F  là trung điểm AC  suy ra MFAC .

Chứng minh tương tự: MEAB .

Vậy AEMF  là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP