Câu hỏi:

13/07/2024 3,377

b) Gọi AH là đường cao của tam giác ABC. Chứng minh EHMF là hình thang cân

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có EF là đường trung bình trong tam giác ABC, suy ra . Theo giả thiết, AB < AC   suy ra  HB < HA  , do đó H  thuộc đoạn MB . Vậy EHMF  là hình thang. (1)

Tam giác HAB  vuông tại H, ta có HE = EA = EB, từ đó suy ra ΔAHE cân tại E

Ta có: EF//BCAHBCEFAH  suy ra ΔAHE  cân tại E  có EF là đường cao đồng thời là đường phân giác  AEF^=HEF^

AEF^=MFE^ . Do đó MEF^=HEF^ (2)

 Từ (1) và (2) suy ra: EHMF  là hình thang cân.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC  vuông tại A (AB < AC) , trung tuyến AM . E, F  lần lượt là trung điểm của AB, AC.

a) Chứng minh rằng AEMF  là hình chữ nhật.

Xem đáp án » 13/07/2024 11,275

Câu 2:

Cho tam giác ABC  vuông cân tại C, M là điểm bất kỳ trên cạnh AB . Vẽ MEAC  tại E , MF BC  tại F . Gọi D là trung điểm của AB . Chứng minh rằng:

a) Tứ giác CFME  là hình chữ nhật.

Xem đáp án » 13/07/2024 5,187

Câu 3:

d) Qua A  kẻ đường thẳng song song với DH  cắt DE  tại K . Chứng minh HKAC .

Xem đáp án » 13/07/2024 3,945

Câu 4:

Cho đoạn thẳng AG và điểm D nằm giữa hai điểm A và G. Trên cùng nửa mặt phẳng bờ AG  vẽ các hình vuông ABCD, DEFG. Gọi M, N lần lượt là trung điểm của AG, EC. Gọi I, K lần lượt là tâm đối xứng của các hình vuông ABCD, DEFG.

a) Chứng minh: AE = CG và AECG  tại H.

Xem đáp án » 13/07/2024 2,745

Câu 5:

Cho tam giác ABC  vuông tại A , đường trung tuyến AM . Gọi H  là điểm đối xứng với M qua AB, E  là giao điểm của MH  và AB . Gọi K  là điểm đối xứng với M  qua AC , F  là giao điểm của MK  và AC .

a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

Xem đáp án » 13/07/2024 2,564

Câu 6:

Cho tam giác nhọn ABC. Gọi H  là trực tâm của tam giác, M  là trung điểm của BC. Gọi D  là điểm đối xứng của H  qua M .

a. Chứng minh tứ giác BHCD  là hình bình hành.

Xem đáp án » 13/07/2024 2,294
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua