Câu hỏi:

03/01/2023 13,117

Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^2 {f\left( x \right)dx} = 4.\) Tích phân \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đặt \(t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt.\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 4 \Rightarrow t = 2\end{array} \right..\) Do đó \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} = \int\limits_0^2 {4tf'\left( t \right)dt} = \int\limits_0^2 {4xf'\left( x \right)dx} .\)

Đặt \(\left\{ \begin{array}{l}u = 4x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 4dx\\v = f\left( x \right)\end{array} \right..\)

Suy ra

\(\int\limits_0^2 {4xf'\left( x \right)dx} = \left[ {4xf\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {4f\left( x \right)dx} = 8f\left( 2 \right) - 4\int\limits_0^2 {f\left( x \right)dx} = 8.16 - 4.4 = 112.\)

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Khi vật dừng lại thì \(v\left( t \right) = 160 - 10t = 0 \Leftrightarrow t = 16\)

Do đó \(S = \int\limits_0^{16} {v\left( t \right)dt} = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \)

\( = \left( {160t - 5{t^2}} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle16\atop\scriptstyle}} \right. = 1280\left( m \right)\).

Chọn B.

Câu 2

Lời giải

Hướng dẫn giải

Từ \(f'\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) (1), suy ra \(f'\left( x \right) \ge 0\) với mọi \(x \in \left[ {1;2} \right]\).

Suy ra \(f\left( x \right)\) là hàm không giảm trên đoạn \(\left[ {1;2} \right]\) nên \(f\left( x \right) \le f\left( 2 \right) < 0\), \(\forall x \in \left[ {1;2} \right]\).

Chia 2 vế hệ thức (1) cho \({\left[ {f\left( x \right)} \right]^2}\) ta được \(\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = x,\forall x \in \left[ {1;2} \right].\) (2)

Lấy tích phân 2 vế trên đoạn \(\left[ {1;2} \right]\) hệ thức (2), ta được

\(\int\limits_1^2 {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx = \int\limits_1^2 {xdx \Leftrightarrow } \left[ {\frac{{ - 1}}{{f\left( x \right)}}} \right]\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = \left( {\frac{{{x^2}}}{2}} \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. \Leftrightarrow \frac{1}{{f\left( 1 \right)}} - \frac{1}{{f\left( 2 \right)}} = \frac{3}{2}.} \)

Do \(f\left( 2 \right) = - \frac{1}{3}\) nên suy ra \(f\left( 1 \right) = - \frac{2}{3}.\)

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP