Câu hỏi:

17/02/2021 32,027 Lưu

Cho hàm số y= f(x)  xác định trên R và có đồ thị như hình bên. Hỏi phương trình  f(|x-2|) = -1/2 có bao nhiêu nghiệm?

A. 2.

B. 0.

C. 6.

D. 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Trước tiên tịnh tiến đồ thị sang phải 2 đơn vị để được đồ thị hàm số y = f(x - 2) .

 

+ Tiếp theo giữ phần đồ thị phía bên phải đường thẳng x = 2, xóa bỏ phần đồ thị phía bên trái đường thẳng x = 2.

+ Cuối cùng lấy đối xứng phần đồ thị vừa giữ lại ở trên qua đường thẳng x= 2. Ta được toàn bộ phần đồ thị của hàm số

y = f(|x-2|) (hĩnh vẽ bên dưới) 

Dựa vào đồ thị hàm số y = f(|x -2|) , ta thấy đường thẳng y= -1/2 cắt đồ thị hàm số  y = f(|x-2|)  tại 4 điểm phân biệt khi và chỉ khi phương trình f(|x-2|) = -1/2 có 4 nghiệm phân biệt.

Chọn D.

N

Ngô Thị San

Giúp em với ạ

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Đạo hàm f'(x) = 1 - m(x+1)2.

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

min y[1;2] + max[1;2] y = f(1) +f(2)  m+12+ m+23 = 1635m6 = 256 m = 5

Chọn D.

Lời giải

Ta có SEFGH nhỏ nhất  S = SAEH + SCGF +SDGH  lớn nhất

Tính được 2S= 2x+ 3y+ (6-x) (6-y) = xy-4x-3y+36          (1)

Mặt khác ∆ AEH đồng dạng  ∆CGF nên  AECG = AHCF  xy = 6

Từ (1) và (2) suy ra  2S = 42 - (4x -18x)

Ta có 2S  lớn nhất khi và chỉ khi  4x - 18xnhỏ nhất.

Biểu thức nhỏ nhất  4x - 18x nhỏ nhất   4x = 18x x = 322  y = 22

Vậy  x+y = 322+22

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP