Câu hỏi:

17/02/2021 127,649

Cho hàm số y = x+mx+1. Với tham số m bằng bao nhiêu thì thỏa mãn  min[1;2] y + max y [1;2] = 163  trên đoạn [1; 2].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Đạo hàm f'(x) = 1 - m(x+1)2.

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

min y[1;2] + max[1;2] y = f(1) +f(2)  m+12+ m+23 = 1635m6 = 256 m = 5

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) = x-m2+mx+1 với m  là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1]  bằng – 2.

Xem đáp án » 18/11/2019 48,605

Câu 2:

Cho một tấm nhôm hình vuông cạnh  6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y  để dịnh tích hình thang EFGH đạt giá trị nhỏ nhất.

Xem đáp án » 17/02/2021 37,472

Câu 3:

Cho hàm số y= f(x)  xác định trên R và có đồ thị như hình bên. Hỏi phương trình  f(|x-2|) = -1/2 có bao nhiêu nghiệm?

Xem đáp án » 17/02/2021 31,120

Câu 4:

Cho hàm số y = x+mx-1 với tham số m bằng bao nhiêu thì  min[2;4] y=3

Xem đáp án » 18/11/2019 27,729

Câu 5:

Tìm tổng tất cả  các giá trị của tham số m  sao cho giá trị lớn nhất của hàm số y = x2-2x+m  trên đoạn [-1; 2] bằng 5.

Xem đáp án » 17/02/2021 23,816

Câu 6:

Cho hàm số y=  f(x )= ax3+ bx2+ cx+ d  có bảng biến thiên như sau:

Khi đó  |f(x)| = m có 4 nghiệm phân biệt x1< x2<  x3< 12< x4 khi và chỉ khi

Xem đáp án » 17/02/2021 22,386
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua