Câu hỏi:

15/05/2021 308

Cho hàm số y=x42mx2+m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến với đồ thị (C) tại A cắt đường tròn γ:x2+y12=4 tạo thành một dây cung có độ dài nhỏ nhất

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Đường tròn γ:x2+y12=4 có tâm I0;1,R=2

Ta có: A1;1m;y'=4x34mxy'1=44m

Suy ra phương trình Δ:y=44mx1+1m

Dễ thấy  luôn đi qua điểm cố định F34;0 và điểm F nằm trong đường tròn γ

Giả sử  cắt γ tại M, N. Thế thì ta có MN=2R2d2I;Δ=24d2I;Δ

Do đó MN nhỏ nhất dI,Δ lớn nhất dI;Δ=IFΔIF

Khi đó đường  có 1 vec tơ chỉ phương uIF=34;1;u=1;44m nên ta có:

u.IF=01.3444m=0m=1316

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có: g'x=f'x1. Do đó đồ thị hàm số g'(x) có được bằng cách tịnh tiến đồ thị của hàm số f'(x) đi xuống 1 đơn vị

Quan sát đồ thị hàm số g'(x) ta thấy g'(x) đổi dấu từ dương sang âm khi đi qua điểm x = - 1

Do đó g(x) đạt cực đại tại x = - 1

Câu 2

Lời giải

Đáp án C

Hàm số y=f(x)=ax3+bx2+cx+d; f'x=3ax2+2bx+c có đồ thị như hình vẽ

Do đó x=0d=4;x=28a+4b+2c+d=0; f'2=012+4b+x=0f'0=0c=0

Tìm được a=1;b=3;c=0;d=4 và hàm số y=x33x2+4

Ta có:

gx=fx2+x+2=x2+x+233x2+x+2+4g'x=322x+1x2+x+232x+1=32x+112x2+x+21g'x=0x=12x=1x=2

Bảng xét dấu của g(x):

Vậy g(x) nghịch biến trên khoảng 12;0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP