Câu hỏi:

15/05/2021 376

Cho hàm số f (x) có đạo hàm trên R và có đồ thị của hàm y = f'(x) như hình vẽ. Biết rằng f0+f3=f2+f5. Giá trị nhỏ nhất và giá trị lớn nhất của f(x) trên đoạn 0;5 lần lượt là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Dựa vào đồ thị của hàm số y = f'(x) ta có BBT của hàm số  = f(x)

Quan sát BBT ta thấy:

f2<f3<f5 và f0>f2

Mặt khác:

f0+f3=f2+f5f3f2=f5f0>0f5>f0

Vậy trên đoạn 0;5 hàm số y=f(x) có f2<f0<f5

Do đó:

+ GTNN của hàm số trên đoạn 0;5 là f(2)

+ GTLN của hàm số trên đoạn 0;5 là f(5)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có: g'x=f'x1. Do đó đồ thị hàm số g'(x) có được bằng cách tịnh tiến đồ thị của hàm số f'(x) đi xuống 1 đơn vị

Quan sát đồ thị hàm số g'(x) ta thấy g'(x) đổi dấu từ dương sang âm khi đi qua điểm x = - 1

Do đó g(x) đạt cực đại tại x = - 1

Câu 2

Lời giải

Đáp án C

Hàm số y=f(x)=ax3+bx2+cx+d; f'x=3ax2+2bx+c có đồ thị như hình vẽ

Do đó x=0d=4;x=28a+4b+2c+d=0; f'2=012+4b+x=0f'0=0c=0

Tìm được a=1;b=3;c=0;d=4 và hàm số y=x33x2+4

Ta có:

gx=fx2+x+2=x2+x+233x2+x+2+4g'x=322x+1x2+x+232x+1=32x+112x2+x+21g'x=0x=12x=1x=2

Bảng xét dấu của g(x):

Vậy g(x) nghịch biến trên khoảng 12;0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP