Câu hỏi:

15/05/2021 2,435

Tìm giá trị nhỏ nhất của hàm số y=sinx+cosx+tanx+cotx+1sinx+1cosx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

y=sinx+cosx+tanx+cotx+1sinx+1cosxy=sinx+cosx+1+sinx+cosxsinxcosx

Đặt t=sinx+cosx2t2 thì sinxcosx=t212

Khi đó:

y=t+2t+1t21=t+2t1=t1+2t1+1

Nếu t1>0t1+2t1+122+1y22+1

Nếu t1<0t<1 thì ta viết lại y=1t+21t1

Ta có: 1t+21t1221t+21t1221 hay y221

Vậy y221

Dấu bằng xảy ra 1t2=2t=12t<1

sinx+cosx=122sinx+π4=12sinx+π4=122

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có: g'x=f'x1. Do đó đồ thị hàm số g'(x) có được bằng cách tịnh tiến đồ thị của hàm số f'(x) đi xuống 1 đơn vị

Quan sát đồ thị hàm số g'(x) ta thấy g'(x) đổi dấu từ dương sang âm khi đi qua điểm x = - 1

Do đó g(x) đạt cực đại tại x = - 1

Câu 2

Lời giải

Đáp án C

Hàm số y=f(x)=ax3+bx2+cx+d; f'x=3ax2+2bx+c có đồ thị như hình vẽ

Do đó x=0d=4;x=28a+4b+2c+d=0; f'2=012+4b+x=0f'0=0c=0

Tìm được a=1;b=3;c=0;d=4 và hàm số y=x33x2+4

Ta có:

gx=fx2+x+2=x2+x+233x2+x+2+4g'x=322x+1x2+x+232x+1=32x+112x2+x+21g'x=0x=12x=1x=2

Bảng xét dấu của g(x):

Vậy g(x) nghịch biến trên khoảng 12;0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP