Câu hỏi:

15/05/2021 424

Cho hàm số y=f(x),y=g(x). Hai hàm số y=f'(x),y=g'(x) có đồ thị hàm số như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y=g'(x).

Hàm số hx=fx+6g2x+52 đồng biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Dựa vào đồ thị hàm số ta thấy đường thẳng y = 10 cắt đồ thị hàm số y = f'(x) tại hai điểm phân biệt 3;10;m;10 với mọi m8;10

Ta có:

f'x+6103x+6m<103x<4g'2x+525,xRh'(x)=f'x+62g'(2x+52)102.5=0,x3;4

Do đó hàm số h(x) đồng biến trên 3;4

Dựa vào các đáp án ta thấy đáp án B thỏa mãn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có: g'x=f'x1. Do đó đồ thị hàm số g'(x) có được bằng cách tịnh tiến đồ thị của hàm số f'(x) đi xuống 1 đơn vị

Quan sát đồ thị hàm số g'(x) ta thấy g'(x) đổi dấu từ dương sang âm khi đi qua điểm x = - 1

Do đó g(x) đạt cực đại tại x = - 1

Câu 2

Lời giải

Đáp án C

Hàm số y=f(x)=ax3+bx2+cx+d; f'x=3ax2+2bx+c có đồ thị như hình vẽ

Do đó x=0d=4;x=28a+4b+2c+d=0; f'2=012+4b+x=0f'0=0c=0

Tìm được a=1;b=3;c=0;d=4 và hàm số y=x33x2+4

Ta có:

gx=fx2+x+2=x2+x+233x2+x+2+4g'x=322x+1x2+x+232x+1=32x+112x2+x+21g'x=0x=12x=1x=2

Bảng xét dấu của g(x):

Vậy g(x) nghịch biến trên khoảng 12;0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP