Câu hỏi:

11/07/2024 5,604

Chứng minh định lí: “Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông”.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hình vẽ minh họa:

Chứng minh định lí: “Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông”. (ảnh 1)

Viết giả thiết và kết luận bằng kí hiệu:

GT

xOy^ yOz^ là hai góc kề bù,

Tia Om là tia phân giác của xOy^

Tia On là tia phân giác của yOz^

KL

mOn^=90°.

Chứng minh định lí:

Vì tia Om là tia phân giác của xOy^ nên ta có:

xOm^=mOy^=12xOy^      (1)

Vì tia On là tia phân giác của zOy^ nên ta có:

yOn^=nOz^=12yOz^         (2)

Từ (1) và (2) ta có:

mOy^+yOn^=12xOy^+12yOz^=12xOy^+yOz^

xOy^ yOz^ là hai góc kề bù nên:

xOy^+yOz^=180°

Do đó mOy^+yOn^=12.180°=90°

Hay mOn^=90°.

Vậy mOn^=90°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”.

Xem đáp án » 11/07/2024 11,369

Câu 2:

Ta gọi hai góc có tổng bằng 180° là hai góc bù nhau. Hãy viết giả thiết, kết luận bằng kí hiệu và chứng minh định lí: “Hai góc cùng bù một góc thứ ba thì hai góc đó bằng nhau”.

Xem đáp án » 11/07/2024 1,600

Câu 3:

Cho định lí “Hai góc đối đỉnh thì bằng nhau”.

a) Hãy vẽ hình minh hoạ, phát biểu giả thiết của định lí trên.

Xem đáp án » 11/07/2024 1,290

Câu 4:

b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì .?.

Xem đáp án » 11/07/2024 800

Câu 5:

Hãy phát biểu phần kết luận còn thiếu của các định lí sau:

a) Hai góc cùng phụ một góc thứ ba thì .?.

Xem đáp án » 11/07/2024 567

Câu 6:

b) Hãy chứng minh định lí đó.

Xem đáp án » 11/07/2024 326

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store