Dạng 1: Vận dụng định nghĩa, tính chất của tam giác cân để chứng minh tính chất khác có đá án

  • 342 lượt thi

  • 10 câu hỏi

  • 30 phút

Câu 1:

Cho ∆ABC cân tại A, M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB và AC. Kết luận nào sau đây đúng?

Xem đáp án

Đáp án đúng là: D

Cho tam giác ABC cân tại A, M là trung điểm BC. Gọi D, E lần lượt  (ảnh 1)

Xét ∆BDM và ∆CEM, có:

\[\widehat {BDM} = \widehat {CEM} = 90^\circ \].

\[\widehat {DBM} = \widehat {ECM}\] (∆ABC cân tại A).

MB = MC (M là trung điểm BC).

Do đó ∆BDM = ∆CEM (cạnh huyền – góc nhọn).

Suy ra BD = CE và \[\widehat {BMD} = \widehat {CME}\] (cặp cạnh và cặp góc tương ứng).

Do đó đáp án A, C đúng.

Xét ∆ADM và ∆AEM, có:

\[\widehat {ADM} = \widehat {AEM} = 90^\circ \].

AM là cạnh chung.

DM = EM (∆BDM = ∆CEM).

Do đó ∆ADM = ∆AEM (cạnh huyền – cạnh góc vuông).

Suy ra AD = AE (cặp cạnh tương ứng).

Do đó đáp án B đúng.

Vậy ta chọn đáp án D.


Câu 2:

Cho ∆ABC cân tại A. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho AD = AE. Kết luận nào sau đây đúng?

Xem đáp án

Đáp án đúng là: B

Cho tam giác ABC cân tại A. Lấy các điểm D, E theo thứ tự thuộc các  (ảnh 1)

Ta xét từng đáp án:

+ Đáp án B, D:

Vì ∆ABC cân tại A nên ta có AB = AC và \[\widehat {ABC} = \widehat {ACB}\].

Xét ∆ABE và ∆ACD, có:

\[\widehat {BAC}\] là góc chung.

AB = AC (chứng minh trên).

AD = AE (giả thiết).

Do đó ∆ABE = ∆ACD (cạnh – góc – cạnh).

Suy ra BE = CD và \[\widehat {ABE} = \widehat {ACD}\] (cặp cạnh và cặp góc tương ứng).

Do đó đáp án B đúng, đáp án D sai.

Đến đây ta có thể chọn đáp án B.

+ Đáp án C:

Ta có A, D, B thẳng hàng. Suy ra BD = AB – AD.

Ta có A, E, C thẳng hàng. Suy ra EC = AC – AE.

Ta có AB = AC (chứng minh trên) và AD = AE (giả thiết).

Suy ra AB – AD = AC – AE.

Do đó BD = EC.

Do đó đáp án C sai.

+ Đáp án A:

Xét ∆BDC và ∆CEB, có:

BC là cạnh chung.

BD = EC (chứng minh trên).

\[\widehat {DBC} = \widehat {ECB}\] (chứng minh trên).

Do đó ∆BDC = ∆CEB (cạnh – góc – cạnh).

Suy ra \[\widehat {BDC} = \widehat {CEB}\] (cặp góc tương ứng).

Do đó đáp án A sai.

Vậy ta chọn đáp án B.


Câu 3:

Cho ∆ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC và AB. Cho các khẳng định sau:

(I) ∆ABM = ∆ACN.

(II) ∆BMC = ∆CNB.

Xem đáp án

Đáp án đúng là: D

Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC (ảnh 1)

Ta có M là trung điểm AC (giả thiết).

Do đó AC = 2AM = 2CM (1).

Ta có N là trung điểm AB (giả thiết).

Do đó AB = 2AN = 2BN (2).

Vì ∆ABC cân tại A nên AB = AC (3).

Từ (1), (2), (3), ta suy ra AM = AN = CM = BN.

Xét ∆ABM và ∆ACN, có:

AB = AC (∆ABC cân tại A).

\[\widehat {BAC}\] là góc chung.

AM = AN (chứng minh trên).

Do đó ∆ABM = ∆ACN (cạnh – góc – cạnh).

Suy ra (I) đúng.

Xét ∆BMC và ∆CNB, có:

BC là cạnh chung.

CM = BN (chứng minh trên).

\[\widehat {NBC} = \widehat {MBC}\] (∆ABC cân tại A).

Do đó ∆BMC = ∆CNB (cạnh – góc – cạnh).

Suy ra (II) đúng.

Vậy ta chọn đáp án D.


Câu 4:

Cho ∆ABC có \[\widehat A = 100^\circ \]\[\widehat B = \widehat C\]. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Khẳng định nào sau đây đúng?

Xem đáp án

Đáp án đúng là: A

Cho tam giác ABC có góc A = 100 độ và bóc B = góc C (ảnh 1)

Vì AM = AN nên ∆AMN cân tại A.

Suy ra \[\widehat {AMN} = \widehat {ANM}\].

Do đó đáp án D sai.

Xét ∆AMN, có: \[\widehat {MAN} + \widehat {AMN} + \widehat {ANM} = 180^\circ \].

Suy ra \[2\widehat {AMN} = 180^\circ - \widehat {MAN} = 180^\circ - 100^\circ = 80^\circ \].

Do đó \[\widehat {AMN} = 40^\circ \].

Xét ∆ABC, có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \].

Suy ra \[2\widehat {ABC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \].

Do đó \[\widehat {ABC} = 40^\circ \].

Ta suy ra \[\widehat {AMN} = \widehat {ABC} = 40^\circ \].

Mà hai góc này ở vị trí đồng vị.

Suy ra MN // BC.

Do đó đáp án A đúng.

Vì ba điểm A, B, C tạo thành một tam giác và MN // BC.

Nên MN không song song với AB và MN không song song với AC.

Do đó đáp án B, C sai.

Vậy ta chọn đáp án A.


Câu 5:

Cho ∆ABC cân tại A có \[\widehat A < 90^\circ \]. Kẻ BD AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Khẳng định nào sau đây đúng?

Xem đáp án

Đáp án đúng là: C

Cho tam giác ABC cân tại A có góc A < 90 độ. Kẻ BD vuông góc AC (ảnh 1)

Vì ∆ABC cân tại A nên AB = AC.

Mà AE = AD (giả thiết).

Do đó AB – AE = AC – AD.

Suy ra EB = DC.

Xét ∆CBE và ∆BCD, có:

BC là cạnh chung.

EB = DC (chứng minh trên).

\[\widehat {EBC} = \widehat {DCB}\] (∆ABC cân tại A).

Do đó ∆CBE = ∆BCD (cạnh – góc – cạnh).

Suy ra \[\widehat {CEB} = \widehat {BDC} = 90^\circ \] (cặp góc tương ứng).

Khi đó ta có CE BE hay CE AB.

Do đó đáp án C đúng.

Vì A, B, C tạo thành một tam giác và CE AB.

Nên CE không vuông góc với BC và CE không vuông góc với AC.

Do đó đáp án B, D sai.

∆ADE có AE = AD.

Suy ra ∆ADE cân tại A.

Do đó \[\widehat {AED} = \widehat {ADE}\].

∆ADE có: \[\widehat {BAC} + \widehat {AED} + \widehat {ADE} = 180^\circ \].

Suy ra \[2\widehat {AED} = 180^\circ - \widehat {BAC}\]    (1).

∆ABC có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \].

Suy ra \[2\widehat {ABC} = 180^\circ - \widehat {BAC}\] (2).

Từ (1), (2), ta suy ra \[\widehat {AED} = \widehat {ABC}\].

Mà hai góc này ở vị trí đồng vị.

Do đó DE // BC.

Suy ra đáp án A sai.

Vậy ta chọn đáp án C.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Bài thi liên quan

Có thể bạn quan tâm

Các bài thi hot trong chương

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận